Skip to main content
Log in

Lupus erythematodes

Lupus erythematosus

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Der Lupus erythematodes ist eine Autoimmunerkrankung mit breitem Spektrum kutaner Manifestationsformen. Der pathogenetisch zugrunde liegende Toleranzverlust gegenüber körpereigenen Antigenen kann durch Störungen der Apoptose, der Elimination von Zellresten und gesteigerte Aktivierung des angeborenen sowie adaptiven Immunsystems bedingt sein. Die gesteigerte Aktivität des angeborenen Immunsystems kann durch Stimulation mit endogenen oder exogenen Nukleinsäuren, genetischen Varianten in Komponenten der Rezeptorkaskaden oder Störungen der Nukleinsäurerestriktion induziert werden. Das resultierende Entzündungsmilieu wird wesentlich durch Typ-I-Interferone bestimmt und ist durch eine Autoantikörperproduktion gekennzeichnet. Wesentliche Provokationsfaktoren des Lupus erythematodes sind UV-Strahlung und Infektionen.

Therapie

Therapeutisch werden Glukokortikoide sehr wirksam eingesetzt. Zugelassene Alternativen für die Langzeittherapie sind Antimalariamedikamente und der B-Zell-Inhibitor Belimumab für Patienten mit systemischem Lupus erythematodes.

Schlussfolgerung

Zukünftige Studien sollten stärker den Effekt neuer Therapien auf den kutanen Phänotyp analysieren, damit frühzeitig ein Einsatz bei kutaner Manifestation des Lupus möglich wird. Zudem sind neue Therapiestrategien erforderlich, die gezielt auf die pathogenetisch verantwortlichen Mechanismen individueller Subtypen des Lupus erythematodes gerichtet sind, um so den Behandlungserfolg innerhalb der heterogenen Patientenpopulation zu verbessern.

Abstract

Background

Lupus erythematosus is an autoimmune disease with a broad spectrum of cutaneous manifestations. The pathogenesis of lupus is based on a loss of tolerance against self antigens and can be mediated by defects in apoptosis, defects in eliminating cellular remnants and increased activation of the innate as well as the adaptive immune system. The increased activation of the innate immune system can be mediated by sensing of endogenous or exogenous nucleic acids, genetic variants in the components of the receptor cascade or disturbances in restriction of self nucleic acids. The inflammatory milieu is characterized by type I interferon expression and autoantibody production. The main trigger factors of the disease are sun exposure and viral infections.

Treatment

Lupus erythematosus is effectively treated by glucocorticosteroids. Approved alternatives for long-term treatment are antimalarial agents and the B-cell inhibitor belimumab for patients with systemic lupus erythematosus.

Conclusion

Future studies should more intensely analyse the effect of novel therapies on cutaneous manifestations to allow early detection of cutaneous lupus. Furthermore novel therapeutic strategies which specifically target the responsible pathogenetic mechanisms of the individual subtypes of lupus erythematosus are needed to improve the therapeutic success for this heterogeneous patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Liu Z, Davidson A (2012) Taming lupus-a new understanding of pathogenesis is leading to clinical advances. Nat Med 18:871–882

    Article  PubMed Central  PubMed  Google Scholar 

  2. Werth VP (2005) Clinical manifestations of cutaneous lupus erythematosus. Autoimmun Rev 4:296–302

    Article  PubMed  Google Scholar 

  3. Kuhn A, Sticherling M, Bonsmann G (2007) Clinical manifestations of cutaneous lupus erythematosus. J Dtsch Dermatol Ges 5:1124–1137

    Article  PubMed  Google Scholar 

  4. Yell JA, Mbuagbaw J, Burge SM (1996) Cutaneous manifestations of systemic lupus erythematosus. Br J Dermatol 135:355–362

    Article  CAS  PubMed  Google Scholar 

  5. Albrecht J, Berlin JA, Braverman IM et al (2004) Dermatology position paper on the revision of the 1982 ACR criteria for systemic lupus erythematosus. Lupus 13:839–849

    Article  CAS  PubMed  Google Scholar 

  6. Petri M, Orbai AM, Alarcon GS et al (2012) Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64:2677–2686

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rhodes B, Vyse TJ (2008) The genetics of SLE: an update in the light of genome-wide association studies. Rheumatology (Oxford) 47:1603–1611

    Article  CAS  Google Scholar 

  8. Gunther C (2015) [Genetics of lupus erythematosus]. Hautarzt 66:121–130

    Article  PubMed  Google Scholar 

  9. Cutolo M, Sulli A, Capellino S et al (2004) Sex hormones influence on the immune system: basic and clinical aspects in autoimmunity. Lupus 13:635–638

    Article  CAS  PubMed  Google Scholar 

  10. Cervera R, Khamashta MA, Hughes GR (2009) The Euro-lupus project: epidemiology of systemic lupus erythematosus in Europe. Lupus 18:869–874

    Article  CAS  PubMed  Google Scholar 

  11. Foering K, Chang AY, Piette EW et al (2013) Characterization of clinical photosensitivity in cutaneous lupus erythematosus. J Am Acad Dermatol 69:205–213

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kuhn A, Sigges J, Biazar C et al (2014) Influence of smoking on disease severity and antimalarial therapy in cutaneous lupus erythematosus: analysis of 1002 patients from the EUSCLE database. Br J Dermatol 171:571–579

    Article  CAS  PubMed  Google Scholar 

  13. Al-Mayouf SM, Sunker A, Abdwani R et al (2011) Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet 43:1186–1188

    Article  CAS  PubMed  Google Scholar 

  14. Yasutomo K, Horiuchi T, Kagami S et al (2001) Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet 28:313–314

    Article  CAS  PubMed  Google Scholar 

  15. Toberer F, Sykora J, Gottel D et al (2013) Apoptotic signal molecules in skin biopsies of cutaneous lupus erythematosus: analysis using tissue microarray. Exp Dermatol 22:656–659

    Article  PubMed  Google Scholar 

  16. Kuhn A, Herrmann M, Kleber S et al (2006) Accumulation of apoptotic cells in the epidermis of patients with cutaneous lupus erythematosus after ultraviolet irradiation. Arthritis Rheum 54:939–950

    Article  PubMed  Google Scholar 

  17. Casciola-Rosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 179:1317–1330

    Article  CAS  PubMed  Google Scholar 

  18. Bernard JJ, Cowing-Zitron C, Nakatsuji T et al (2012) Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat Med 18:1286–1290

    Article  CAS  PubMed  Google Scholar 

  19. Hansel A, Gunther C, Baran W et al (2013) Human 6-sulfo LacNAc (slan) dendritic cells have molecular and functional features of an important pro-inflammatory cell type in lupus erythematosus. J Autoimmun 40:1–8

    Article  PubMed  Google Scholar 

  20. Ganguly D, Chamilos G, Lande R et al (2009) Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 206:1983–1994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lande R, Gregorio J, Facchinetti V et al (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449:564–569

    Article  CAS  PubMed  Google Scholar 

  22. Hornung V (2014) SnapShot: nucleic acid immune sensors, part 2. Immunity 41:1066

    Article  CAS  PubMed  Google Scholar 

  23. Gehrke N, Mertens C, Zillinger T et al (2013) Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39:482–495

    Article  CAS  PubMed  Google Scholar 

  24. Ablasser A, Hemmerling I, Schmid-Burgk JL et al (2014) TREX1 deficiency triggers cell-autonomous immunity in a cGAS-dependent manner. J Immunol 192:5993–5997

    Article  CAS  PubMed  Google Scholar 

  25. Yang YG, Lindahl T, Barnes DE (2007) Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131:873–886

    Article  CAS  PubMed  Google Scholar 

  26. Stetson DB, Ko JS, Heidmann T et al (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:587–598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lee-Kirsch MA, Gong M, Chowdhury D et al (2007) Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 39:1065–1067

    Article  CAS  PubMed  Google Scholar 

  28. Lee-Kirsch MA, Chowdhury D, Harvey S et al (2007) A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J Mol Med 85:531–537

    Article  CAS  PubMed  Google Scholar 

  29. Gunther C, Kind B, Reijns MA et al (2015) Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J Clin Invest 125:413–424

    Article  PubMed Central  PubMed  Google Scholar 

  30. Moser KL, Kelly JA, Lessard CJ et al (2009) Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun 10:373–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Celhar T, Fairhurst AM (2014) Toll-like receptors in systemic lupus erythematosus: potential for personalized treatment. Front Pharmacol 5:265

    Article  PubMed Central  PubMed  Google Scholar 

  32. Liu Y, Jesus AA, Marrero B et al (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518

    Article  PubMed Central  PubMed  Google Scholar 

  33. Wenzel J, Worenkamper E, Freutel S et al (2005) Enhanced type I interferon signalling promotes Th1-biased inflammation in cutaneous lupus erythematosus. J Pathol 205:435–442

    Article  CAS  PubMed  Google Scholar 

  34. Meller S, Winterberg F, Gilliet M et al (2005) Ultraviolet radiation-induced injury, chemokines, and leukocyte recruitment: an amplification cycle triggering cutaneous lupus erythematosus. Arthritis Rheum 52:1504–1516

    Article  CAS  PubMed  Google Scholar 

  35. Obermoser G, Pascual V (2010) The interferon-alpha signature of systemic lupus erythematosus. Lupus 19:1012–1019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Loser K, Vogl T, Voskort M et al (2010) The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat Med 16:713–717

    Article  CAS  PubMed  Google Scholar 

  37. Ramos PS, Shaftman SR, Ward RC et al (2014) Genes associated with SLE are targets of recent positive selection. Autoimmune Dis 2014:203435

  38. Kuznik A, Bencina M, Svajger U et al (2011) Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 186:4794–4804

    Article  CAS  PubMed  Google Scholar 

  39. Sigges J, Biazar C, Landmann A et al (2013) Therapeutic strategies evaluated by the European Society of Cutaneous Lupus Erythematosus (EUSCLE) core set questionnaire in more than 1000 patients with cutaneous lupus erythematosus. Autoimmun Rev 12:694–702

    Article  PubMed  Google Scholar 

  40. Merrill JT, Ginzler EM, Wallace DJ et al (2012) Long-term safety profile of belimumab plus standard therapy in patients with systemic lupus erythematosus. Arthritis Rheum 64:3364–3373

    Article  CAS  PubMed  Google Scholar 

  41. Husein-ElAhmed H, Callejas-Rubio JL, Rios-Fernandez R et al (2014) Refractory subacute cutaneous lupus erythematous responding to a single course of belimumab: a new anti-BLyS human monoclonal antibody. Indian J Dermatol Venereol Leprol 80:477–478

    Article  PubMed  Google Scholar 

  42. Hofmann SC, Leandro MJ, Morris SD et al (2013) Effects of rituximab-based B-cell depletion therapy on skin manifestations of lupus erythematosus–report of 17 cases and review of the literature. Lupus 22:932–939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Gunther C, Aringer M, Lochno M et al (2012) TNF-alpha blockade with infliximab in a patient with lupus erythematosus profundus. Acta Derm Venereol 92:401–403

    Article  PubMed  Google Scholar 

  44. Napolitano M, Giampetruzzi AR, Didona D et al (2013) Toxic epidermal necrolysis-like acute cutaneous lupus erythematosus successfully treated with a single dose of etanercept: report of three cases. J Am Acad Dermatol 69:e303–e305

    Article  Google Scholar 

  45. Okon L, Rosenbach M, Krathen M et al (2014) Lenalidomide in treatment-refractory cutaneous lupus erythematosus: efficacy and safety in a 52-week trial. J Am Acad Dermatol 70:583–584

    Article  PubMed Central  PubMed  Google Scholar 

  46. Cortes-Hernandez J, Torres-Salido M, Castro-Marrero J et al (2012) Thalidomide in the treatment of refractory cutaneous lupus erythematosus: prognostic factors of clinical outcome. Br J Dermatol 166:616–623

    Article  CAS  PubMed  Google Scholar 

  47. Goodfield M, Davison K, Bowden K (2004) Intravenous immunoglobulin (IVIg) for therapy-resistant cutaneous lupus erythematosus (LE). J Dermatolog Treat 15:46–50

    Article  CAS  PubMed  Google Scholar 

  48. Wang B, Higgs BW, Chang L et al (2013) Pharmacogenomics and translational simulations to bridge indications for an anti-interferon-alpha receptor antibody. Clin Pharmacol Ther 93:483–492

    Article  CAS  PubMed  Google Scholar 

  49. Petri M, Wallace DJ, Spindler A et al (2013) Sifalimumab, a human anti-interferon-alpha monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum 65:1011–1021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Danksagung

C. Günther erhielt eine Förderung der Deutschen Forschungsgemeinschaft (GU1212/1-1 und GU 1212/1-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Günther.

Ethics declarations

Interessenkonflikt

C. Günther und S. Beissert geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Alle Patienten, die über Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts zu identifizieren sind, haben hierzu ihre schriftliche Einwilligung gegeben. Im Falle von nicht mündigen Patienten liegt die Einwilligung eines Erziehungsberechtigten oder des gesetzlich bestellten Betreuers vor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günther, C., Beissert, S. Lupus erythematodes. Hautarzt 66, 611–616 (2015). https://doi.org/10.1007/s00105-015-3644-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-015-3644-7

Schlüsselwörter

Keywords

Navigation