Skip to main content
Log in

Stellenwert moderner physikalischer Behandlungsverfahren bei infizierten und kolonisierten Wunden in der Dermatologie

Importance of modern treatment procedures for infected and colonized wounds in dermatology

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

In den kommenden Jahren ist eine Zunahme von Patienten mit chronischen Ulkuswunden, aber auch mit Wunden bei Tumorerkrankungen zu erwarten – beides typischerweise Erkrankungen, die eine komplexe Therapie erfordern und zunehmend und über zum Teil lange Strecken ambulant versorgt werden müssen. Damit rücken in den letzten Jahren immer mehr Behandlungsverfahren in den Vordergrund, die nicht nur effektiv sind und gut vertragen werden, sondern auch ambulant problemlos angewandt werden können. Hier liegen die Chancen für die Kaltplasmatherapie, die extrakorporale Stoßwellentherapie (ESWT), die wassergefilterte Infrarot-A-Therapie (wIRA), die Elektrostimulation und auch für die Low-Level-Laser-Therapie (LLLT) als adjuvante Verfahren im Rahmen des multimodalen Behandlungskonzeptes von Problemwunden. Alle Verfahren wirken mindestens indirekt antimikrobiell, was bei Keimbelastungen in der Wunde von Vorteil sein kann. Wie auch die anderen Behandlungsmethoden bei Problemwunden erfordert auch der Erfolg versprechende Einsatz der genannten Methoden große Erfahrung in der Wundheilkunde und weitgehende sowie kontinuierliche interdisziplinäre Diagnostik und Therapie (Wundzentrum).

Abstract

In the coming years increasing numbers of patients with chronic ulcers and tumor wounds are to be expected, both of which are typically multifaceted diseases requiring complex and increasingly long-term ambulatory therapy. Therefore, in recent years special medical emphasis has been placed on efficacious therapies with good tolerability and also suitability regarding feasibility for outpatient treatment. Some of these methods, such as cold plasma therapy, extracorporeal shock wave therapy (ESWT), water-filtered infrared therapy (wIRA), electrostimulation (ES) and low level laser therapy (LLLT) have a good chance of success when applied as an adjuvant method in the multimodal treatment concept for patients with recalcitrant wounds. All of these methods have at least indirect antimicrobial properties which can be advantageous in cases of microbial infiltration of wounds. As for all other methods for treating recalcitrant wounds, the promising application of the aforementioned methods requires great expertise in wound healing together with a broad and continuous interdisciplinary diagnostics and therapy (wound center).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Barranco SD, Spadaro JA, Berger TJ, Becker RO (1974) In vitro effect of weak direct current on Staphylococcus aureus. Clin Orthop 100:250–255

    PubMed  Google Scholar 

  2. Buslau M, Hoffmann G (1993) Die hyperbare Oxygenation (HBO) – eine adjuvante Therapie akuter und chronischer Wundheilungsstörungen. Dermatol Monatsschr 179:39–54

    Google Scholar 

  3. Buslau M, Hoffmann G (1993) Hyperbaric oxygenation in the treatment of skin diseases. In: Fuchs J, Packer L (Hrsg) Oxidative stress in dermatology. Marcel Dekker, New York, S 457–485

  4. Daeschlein G (2014) Wundbehandlung In: Metelmann H-R, Hammes S (Hrsg) Lasermedizin in der Ästhetischen Chirurgie. Springer, Berlin

    Google Scholar 

  5. Daeschlein G, Assadian O, Kloth LC, Meinl C, Ney F, Kramer A (2007) Antibacterial activity of positive and negative polarity high voltage pulsed current (HVPC) on six typical gram positive and gram negative bacterial pathogens of chronic wounds. Wound Rep Reg 15(3):399–403

    Article  Google Scholar 

  6. Daeschlein G, Mumcuoglu KY, Assadian O, Hoffmeister B, Kramer A (2007) In vitro antibacterial activity of Lucilia sericata maggot secretions. Skin Pharmacol Phys 20:112–115

    Article  CAS  Google Scholar 

  7. Daeschlein G, Lehnert W, Arnold A, Haase H, Jünger M (2010) Hygienic safety of a new hydrodynamic wound debridement system. Dermatol Surg 36(9):1426–1438

    Article  CAS  PubMed  Google Scholar 

  8. Daeschlein G, Alborova J, Patzelt A, Kramer A, Lademann J (2012) Kinetics of physiological skin flora in a suction blister wound model on healthy subjects after treatment with water-filtered infrared-A radiation. Skin Pharmacol Physiol 25(2):73–77

    Article  CAS  PubMed  Google Scholar 

  9. Daeschlein G, Scholz S, Arnold A, von Podewils S, Haase H, Emmert S, von Woedtke T, Weltmann KD, Junger M (2012) In vitro susceptibility of important skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym 9:380–389

    Article  CAS  Google Scholar 

  10. Dakowicz A, Kuryliszyn-Moskal A, Kosztyła-Hojna B, Moskal D, Latosiewicz R (2011) Comparison of the long-term effectiveness of physiotherapy programs with low-level laser therapy and pulsed magnetic field in patients with carpal tunnel syndrome. Adv Med Sci 56(2):270–274

    Article  CAS  PubMed  Google Scholar 

  11. Dumfarth J, Zimpfer D, Vögele-Kadletz M, Holfeld J, Sihorsch F, Schaden W, Czerny M, Aharinejad S, Wolner E, Grimm M (2008) Prophylactic low-energy shock wave therapy improves wound healing after vein harvesting for coronary artery bypass graft surgery: a prospective, randomized trial. Ann Thorac Surg 86(6):1909–1913

    Article  PubMed  Google Scholar 

  12. Ekim A, Armagan O, Tascioglu F, Oner C, Colak M (2007) Effect of low level laser therapy in rheumatoid arthritis patients with carpal tunnel syndrome. Swiss Med Wkly 137(23–24):347–352

    PubMed  Google Scholar 

  13. Ezzati A, Bayat M, Khoshvaghti A (2010) Low-level laser therapy with a pulsed infrared laser accelerates second-degree burn healing in rat: a clinical and microbiologic study. Photomed Laser Surg 28(5):603–611

    Article  CAS  PubMed  Google Scholar 

  14. von Felbert V, Schumann H, Mercer J, Strasser W, Daeschlein G, Hoffmann G (2007) Therapy of chronic wounds with water-filtered infrared-A (wIRA) GMS Krankenhhyg Interdiszip 2(2):Doc52, 3–5

    PubMed Central  Google Scholar 

  15. Gentzkow GD (1993) Electrical stimulation to heal dermal wounds. J Dermatol Surg Onco 119:753–758

    Article  Google Scholar 

  16. Hartel M, Illing P, Mercer JB, Lademann J, Daeschlein G, Hoffmann G (2007) Therapy of acute wounds with water-filtered infrared-A (wIRA). GMS Krankenhaushyg Interdiszip 2(2): Doc53

    Google Scholar 

  17. Hess CL, Howard MA, Attinger CE (2003) A review of mechanical adjuncts in wound healing: hydrotherapy, ultrasound, negative pressure therapy, hyperbaric oxygen, and electrostimulation. Ann Plast Surg 51:210–218

    Article  PubMed  Google Scholar 

  18. Hoffmann G (1994) Improvement of wound healing in chronic ulcers by hyperbaric oxygenation and by waterfiltered ultrared. A induced localized hyperthermia. Adv Exp Med Biol 345:181–188

    Article  CAS  PubMed  Google Scholar 

  19. Hoffmann G (2006) Water-filtered infrared A (wIRA) for the improvement of wound healing. GMS Krankenhaushyg Interdiszip 1(1): Doc20

    Google Scholar 

  20. Jünger M, Hahn M, Klyscz T, Steins A (1999) Role of microangiopathy in the development of venous leg ulcers. Progr Appl Microc 23:180–193

    Article  Google Scholar 

  21. Karu TI (1987) Photobiological fundamentals of low-power laser therapy. IEEE J Quant Elect 23:1703–1717

    Article  Google Scholar 

  22. Karu T (1988) Molecular mechanism of the therapeutic effect of low-intensity laser radiation. Lasers Life Science 2:53–74

    Google Scholar 

  23. Kincaid CB, Lavoie KH (1989) Inhibition of bacterial growth in vitro following stimulation with high voltage, monophasic, pulsed current. Phys Ther 69:651–655

    CAS  PubMed  Google Scholar 

  24. Kivisaari J, Vihersaari T, Renvall S, Niinikoski J (1975) Energy metabolism of experimental wounds at various oxygen environments. Ann Surg 181:823–828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kling D, Lindner V, Betz E (1989) Gefäßwandreaktionen von Arterien und Venen auf Elektrostimulation – vergleichende ultrastrukturelle Untersuchungen. Phlebol U Proktol 18:279–283

    Google Scholar 

  26. Kloth LC (2001) Electrical stimulation for wound healing. In: Kloth LC, McCulloch JM (Hrsg) Wound healing: alternatives in management, 3. Aufl. F.A. Davis Publishing Company, Philadelphia, S 271–315

  27. Kramer A, Daeschlein G, Kammerlander G et al (2004) Konsensusempfehlung zur Auswahl von Wirkstoffen für die Wundantiseptik. Hyg Med 29(5):147–157

    Google Scholar 

  28. Lambrechts SA, Demidova TN, Aalders MC, Hasan T, Hamblin MR (2005) Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem Photobiol Sci 4(7):503–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Merriman HL, Hegyi CA, Albright-Overton CR, Carlos J, Putnam RW, Mulcare JA (2004) A comparison of four electrical stimulation types on Staphylococcus aureus growth in vitro. J Rehab Research Dev 41:139–146

    Article  Google Scholar 

  30. Mester E, Ludany G, Sellyei M, Szende B, Tota J (1968) The stimulating effects of low power laser rays on biological systems. Laser Rev (Land) 1:3

    Google Scholar 

  31. Moretti B, Notarnicola A, Maggio G, Moretti L, Pascone M, Tafuri S, Patella V (2009) The management of neuropathic ulcers of the foot in diabetes by shock wave therapy. BMC Musculoskelet Disord 10:54. doi:10.1186/1471-2474-10-54

  32. Müller G, Kramer A (2008) Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicrob Chemother 61:1281–1287

    Article  PubMed  Google Scholar 

  33. Nussbaum EL, Lilge L, Mazzulli T (2003) Effects of low-level laser therapy (LLLT) of 810 nm upon in vitro growth of bacteria: relevance of irradiance and radiant exposure. J Clin Laser Med Surg 21(5):283–290

    Article  PubMed  Google Scholar 

  34. Okamoto H, Iwase T, Morioka T (1992) Dye-mediated bactericidal effect of He-Ne laser irradiation on oral microorganisms. Lasers Surg Med 12:450–458

    Article  CAS  PubMed  Google Scholar 

  35. Ong PC, Laatsch L, Kloth L (1994) Antibacterial effects of a silver electrode carrying microamperage direct current in vitro. J Clin Electrophysiol 6:14–18

    Google Scholar 

  36. Ottomann C, Hartmann B, Tyler J, Maier H, Thiele R, Schaden W, Stojadinovic A (2010) Prospective randomized trial of accelerated re-epithelization of skin graft donor sites using extracorporeal shock wave therapy. J Am Coll Surg 211(3):361–367

    Article  PubMed  Google Scholar 

  37. Passarella S, Casamassima E, Molinari S, Pastore E, Quagliariello E, Catalano IM, Cingolani A (1984) Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by Helium-Neon laser. FEES Lett 175:95–99

    Article  CAS  Google Scholar 

  38. Reich J, Tarjan P (1990) Electrical stimulation of skin. Int J Dermatol 29:395–400

    Article  CAS  PubMed  Google Scholar 

  39. Saggini R, Figus A, Troccola A, Cocco V, Saggini A, Scuderi N (2008) Extracorporeal shock wave therapy for management of chronic ulcers in the lower extremities. Ultrasound Med Biol 34(8):1261–1271

    Article  CAS  PubMed  Google Scholar 

  40. Santos NR, de M Sobrinho JB, Almeida PF, Ribeiro AA, Cangussú MC, dos Santos JN, Pinheiro AL (2011) Influence of the combination of infrared and red laser light on the healing of cutaneous wounds infected by Staphylococcus aureus. Photomed Laser Surg 29(3):177–182

  41. Schaden W, Thiele R, Kölpl C, Pusch M, Nissan A, Attinger CE, Maniscalco-Theberge ME, Peoples GE, Elster EA, Stojadinovic A (2007) Shock wave therapy for acute and chronic soft tissue wounds: a feasibility study. J Surg Res 143(1):1–12

    Article  PubMed  Google Scholar 

  42. Stieger M, Schmid JP, Bajrami S, Hunziker T (2013) Extracorporeal shock wave therapy as a treatment of a non-healing chronic leg ulcer. Hautarzt 64(6):443–446

    Article  CAS  PubMed  Google Scholar 

  43. Sussman C, Byl N (1998) Electrical stimulation for wound healing. In: Sussman C, Bates-Jensen BM (Hrsg) Wound care collaborative practice manual for physical therapists and nurses. Aspen Publishers, Aspen, S 505

  44. Wang CJ, Kuo YR, Wu RW, Liu RT, Hsu CS, Wang FS, Yang KD (2009) Extracorporeal shockwave treatment for chronic diabetic foot ulcers. J Surg Res 152(1):96–103

    Article  PubMed  Google Scholar 

  45. Warriner RA, III, Wilcox JR, Carter MJ, Stewart DG (2012) More frequent visits to wound care clinics result in faster times to close diabetic foot and venous leg ulcers. Advances Skin Wound Care 25:494–501

    Article  Google Scholar 

  46. Wood J, Evans P, Schallreuter K, Jacobson W, Sufit R, Newman J, White C, Jacobson M (1993) A multicenter study on the use of pulsed low-intensity direct current for healing chronic stage II and stage III decubitus ulcers. Arch Dermatol 129:999–1009

    Article  CAS  PubMed  Google Scholar 

  47. Zuder D, Jünger M, Klyscz T, Büchtemann A, Steins A, Rassner G (1998) Elektrostimulation als neue Behandlungsmethode des Ulcus cruris venosum. Vasomed 10:153–157

    Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt

G. Daeschlein, S. Lutze, A. Arnold, S. von Podewils und M. Jünger geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Daeschlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daeschlein, G., Lutze, S., Arnold, A. et al. Stellenwert moderner physikalischer Behandlungsverfahren bei infizierten und kolonisierten Wunden in der Dermatologie. Hautarzt 65, 949–959 (2014). https://doi.org/10.1007/s00105-014-3526-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-014-3526-4

Schlüsselwörter

Keywords

Navigation