Skip to main content

Advertisement

Log in

Hauteigene Antibiotika

Wichtige Erkenntnisse über antimikrobielle Peptide für Klinik und Praxis

The skin’s own antibiotics

Important features of antimicrobial peptides for clinical practice

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Trotz permanenter Konfrontation mit potenziell schädigenden Einflüssen, eigener mikrobieller Flora und im Alltag häufig vorkommenden kleineren Verletzungen sind Infektionen gesunder Haut selten. Eine chemische Barriere aus konstitutiv exprimierten und durch verschiedene Stimuli induzierbaren antimikrobiellen Peptiden (AMP) trägt zur Widerstandskraft des Integuments bei. AMP sind evolutionär sehr alte Bestandteile der angeborenen Immunabwehr, die aufgrund ihres breiten Wirkspektrums und selten auftretender Resistenzen als antimikrobielle Therapeutika der Zukunft in den Fokus des Interesses gerückt sind. Weiterhin wird einer veränderten Expression dieser Moleküle eine Rolle in der Pathogenese verschiedener Erkrankungen zugeschrieben. Auch über die antimikrobiellen Effekte hinausgehende Wirkungen im Immunsystem oder bei der Wundheilung werden derzeit intensiv erforscht.

Abstract

Despite permanent confrontation with a potentially harmful environment, its own microbiota and the fact that minor injuries occur frequently in everyday life, skin infections are a rare event. A chemical barrier of antimicrobial peptides (AMP), some of them constitutively expressed, others inducible by various stimuli, contributes to the integument’s resistance. AMP are evolutionarily old components of the innate immunity which became the focus of interest due to their broad spectrum of activity against microorganisms and the rare occurrence of antimicrobial resistance. These attributes make them promising alternative candidates for future antibiotics. Furthermore various dermatological diseases are associated with an altered expression of these molecules, which might then play a pathogenetic role. In addition to their antimicrobial activity, some AMP have immunomodulatory effects and can promote wound healing, properties which currently are under intensive research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Beylot C, Auffret N, Poli F et al (2013) Propionibacterium acnes: an update on its role in the pathogenesis of acne. J Eur Acad Dermatol Venereol [Epub ahead of print]

  2. Diamond G, Beckloff N, Weinberg A, Kisich KO (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15:2377–2392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Dombrowski Y, Peric M, Koglin S et al (2011) Cytosolic dna triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med 3(82):82ra38

    Article  PubMed Central  PubMed  Google Scholar 

  4. Dressel S, Harder J, Cordes J et al (2010) Differential expression of antimicrobial peptides in margins of chronic wounds. Exp Dermatol 19:628–632

    Article  CAS  PubMed  Google Scholar 

  5. Fjell CD, Hiss JA, Hancock REW, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11(1):37–51

    CAS  Google Scholar 

  6. Frohm M, Agerberth B, Ahangari G et al (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272:15258–15263

    Article  CAS  PubMed  Google Scholar 

  7. Gambichler T, Skrygan M, Appelhans C et al (2007) Expression of human beta-defensins in patients with mycosis fungoides. Arch Dermatol Res 299(4):221–224

    Article  CAS  PubMed  Google Scholar 

  8. Gambichler T, Skrygan M, Huyn J et al (2006) Pattern of mRNA expression of beta-defensins in basal cell carcinoma. BMC Cancer 6:163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gambichler T, Skrygan M, Tomi NS et al (2008) Differential mRNA expression of antimicrobial peptides and proteins in atopic dermatitis as compared to psoriasis vulgaris and healthy skin. Int Arch Allergy Immunol 147:17–24

    Article  CAS  PubMed  Google Scholar 

  10. Gibson AL, Thomas-Virnig CL, Centanni JM et al (2012) Nonviral human beta defensin-3 expression in a bioengineered human skin tissue: a therapeutic alternative for infected wounds. Wound Repair Regen 20(3):414–424

    Article  PubMed Central  PubMed  Google Scholar 

  11. Gläser R, Harder J, Lange H et al (2005) Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 6:37–45

    Article  Google Scholar 

  12. Gläser R, Meyer-Hoffert U, Harder J et al (2009) The antimicrobial protein psoriasin (S100A7) is upregulated in atopic dermatitis and after experimental skin barrier disruption. J Invest Dermatol 129:641–649

    Article  PubMed  Google Scholar 

  13. Gläser R, Navid F, Schuller W et al (2009) UV-B radiation induces the expression of antimicrobial peptides in human keratinocytes in vitro and in vivo. J Allergy Clin Immunol 123:1117–1123

    Article  PubMed  Google Scholar 

  14. Grether-Beck S, Felsner I, Brenden H et al (2012) Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression. J Invest Dermatol 132(6):1561–1572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Haney EF, Hancock RB (2013) Peptide design for antimicrobial and immunomodulatory applications. Biopolymers 100:572–583

    Article  PubMed  Google Scholar 

  16. Harder J, Bartels J, Christophers E, Schröder J-M (1997) A peptide antibiotic from human skin. Nature 387:861

    Article  CAS  PubMed  Google Scholar 

  17. Harder J, Bartels J, Christophers E, Schröder J-M (2001) Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713

    Article  CAS  PubMed  Google Scholar 

  18. Harder J, Dressel S, Wittersheim M et al (2010) Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. J Invest Dermatol 130:1355–1364

    Article  CAS  PubMed  Google Scholar 

  19. Harder J, Schröder J-M (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277:46779–46784

    Article  CAS  PubMed  Google Scholar 

  20. Harder J, Siebert R, Zhang Y et al (1997) Mapping of the gene encoding human -defensin-2 (DEFB2) to chromosome region 8p22-p23.1. Genomics 46:472–475

    Article  CAS  PubMed  Google Scholar 

  21. Harder J (2008) Antimicrobial peptides: ancient molecules as modern therapeutics? Expert Rev Dermatol 3(1):1–5

    Article  CAS  Google Scholar 

  22. Harder J, Gläser R, Schröder J-M (2007) Human antimicrobial proteins effectors of innate immunity. J Endotoxin Res 13(6):317–338

    Article  CAS  PubMed  Google Scholar 

  23. Harder J, Schröder J-M, Gläser R (2013) The skin surface as antimicrobial barrier: present concepts and future outlooks. Exp Dermatol 22(1):1–5

    Article  CAS  PubMed  Google Scholar 

  24. Harder J, Tsuruta D, Murakami M, Kurokawa I (2013) What is the role of antimicrobial peptides (amp) in acne vulgaris? Exp Dermatol 22(6):386–391

    Article  CAS  PubMed  Google Scholar 

  25. Hirsch T, Spielmann M, Zuhaili B et al (2009) Human beta-defensin-3 promotes wound healing in infected diabetic wounds. J Gene Med 11:220–228

    Article  CAS  PubMed  Google Scholar 

  26. Joly S, Compton LM, Pujol C et al (2009) Loss of human beta-defensin 1, 2, and 3 expression in oral squamous cell carcinoma. Oral Microbiol Immunol 24:353–360

    Article  CAS  PubMed  Google Scholar 

  27. Kisich KO, Howell MD, Boguniewicz M et al (2007) The constitutive capacity of human keratinocytes to kill Staphylococcus aureus is dependent on -defensin 3. J Invest Dermatol 127:2368–2380

    Article  CAS  PubMed  Google Scholar 

  28. Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Larson E (2001) Hygiene of the skin: when is clean too clean? Emerg Infect Dis 7(2):225–230

    Article  CAS  PubMed  Google Scholar 

  30. Meyer-Hoffert U, Schwarz T, Schröder J-M, Gläser R (2008) Expression of human beta-defensin-2 and -3 in verrucae vulgares and condylomata acuminata. J Eur Acad Dermatol Venereol 22:1050–1054

    Article  CAS  PubMed  Google Scholar 

  31. Meyer-Hoffert U, Schwarz T, Schröder J-M, Gläser R (2010) Increased expression of human beta-defensin 3 in mollusca contagiosum. Clin Exp Dermatol 35(2):190–192

    Article  CAS  PubMed  Google Scholar 

  32. Nakatsuji T, Gallo R (2012) Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol 132(3 Pt 2):887–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Peschel A, Sahl H-G (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536

    Article  CAS  PubMed  Google Scholar 

  34. Reinholz M, Schauber J (2012) Vitamin D and innate immunity of the skin. Dtsch Med Wochenschr 137(46):2385–2389

    Article  CAS  PubMed  Google Scholar 

  35. Schittek B, Hipfel R, Sauer B et al (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 12:1133–1137

    Article  Google Scholar 

  36. Schröder J-M (2006) Antimikrobielle Peptide: Effektormoleküle der Haut als Abwehrorgan. Hautarzt 53:424–435

    Google Scholar 

  37. Scola N, Gambichler T, Saklaoui H et al (2012) The expression of antimicrobial peptides is significantly altered in cutaneous squamous cell carcinoma and precursor lesions. Br J Dermatol 167(3):591–597

    Article  CAS  PubMed  Google Scholar 

  38. Simanski M, Dressel S, Gläser R, Harder J (2010) Rnase 7 protects healthy skin from staphylococcus aureus colonization. J Invest Dermatol 130(12):2836–2838

    Article  CAS  PubMed  Google Scholar 

  39. Wang T-T, Nestel FP, Bourdeau V et al (2004) Cutting edge: 1,25-dihydroxyvitamin d3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173(5):2909–2912

    CAS  PubMed  Google Scholar 

  40. Wilmes M, Cammue BPA, Sahl H-G, Thevissen K (2011) Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation. Nat Prod Rep 28(8):1350–1358

    Article  CAS  PubMed  Google Scholar 

  41. Wittersheim M, Cordes J, Meyer-Hoffert U et al (2013) Differential expression and in vivo secretion of the antimicrobial peptides psoriasin (s100a7), rnase 7, human beta-defensin-2 and -3 in healthy human skin. Exp Dermatol 22(5):364–366

    Article  CAS  PubMed  Google Scholar 

  42. Yamasaki K, Gallo RL (2011) Rosacea as a disease of cathelicidins and skin innate immunity. J Investig Dermatol Symp Proc 15(1):12–15

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Der Artikel wurde zum Teil mit Mitteln des BMBF („SkinStaph“ im Verbundprojekt „Suszeptibilität von Infektionen“) für die Autoren J. Harder und R. Gläser gefördert.

Einhaltung ethischer Richtlinien

Interessenkonflikt. J. Cordes, M. Wittersheim, J. Harder und R. Gläser geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cordes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordes, J., Wittersheim, M., Harder, J. et al. Hauteigene Antibiotika. Hautarzt 65, 50–55 (2014). https://doi.org/10.1007/s00105-013-2638-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-013-2638-6

Schlüsselwörter

Keywords

Navigation