Skip to main content

Advertisement

Log in

Akne und Ernährung

Acne and diet

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

In industrialisierten Ländern tritt Akne als eine epidemische Zivilisationskrankheit des Talgdrüsenfollikels Jugendlicher und junger Erwachsener auf, assoziiert mit erhöhtem Body-Mass-Index und Insulinresistenz. „Westlicher“ Ernährungsstil, gekennzeichnet durch hohe glykämische Last und vermehrten Konsum insulinotroper Milcheiweiße, spielt in der Pathogenese der Akne eine bedeutende Rolle. Nahrungsinduzierte metabolische Signale werden auf zellulärer Ebene durch den metabolischen Transkriptionsfaktor FoxO1 detektiert und durch die Kinase mTORC1 integriert. mTORC1, der zelluläre Hauptregulator der Protein- und Lipidbiosynthese, des Zellwachstums und der Zellproliferation, wird durch Insulin und IGF-1 sowie verzweigtkettige essenzielle Aminosäuren, vor allem Leucin, aktiviert. Das Verständnis der Signaltransduktion westlicher Nahrung mit überhöhter mTORC1-Aktivität begründet die diätetische Aknetherapie mit Verminderung der glykämischen Last und übermäßigen Milcheiweißkonsums. Geeignet zur Abschwächung überhöhter mTORC1-Aktivität ist eine paläolithisch betonte Ernährung mit reduziertem Konsum von Zucker, hyperglykämischen Getreiden, Milch und Milchprodukten, jedoch erhöhtem Konsum von Gemüse und Fisch.

Abstract

In industrialized countries acne presents as an epidemic disease of civilization affecting sebaceous follicles of adolescents and young adults, associated with increased body mass index and insulin resistance. “Western style” diet, characterized by high glycaemic load and increased consumption of insulinotropic milk proteins, plays an important role in acne pathogenesis. On the cellular level, nutrient-derived metabolic signals are sensed by the metabolic transcription factor FoxO1 and integrated by the regulatory kinase mTORC1. mTORC1, the central hub of protein- and lipid biosynthesis, cell growth and proliferation, is activated by insulin, IGF-1 and branched-chain essential amino acids, especially leucine. The understanding of Western diet-mediated nutrient signalling with over-activated mTORC1 offers a reasonable approach for dietary intervention in acne by lowering glycaemic load and consumption of milk and milk products. A suitable diet attenuating increased mTORC1 activity is a Palaeolithic-like diet with reduced intake of sugar, hyperglycaemic grains, milk and milk products but enriched consumption of vegetables and fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Adebamowo CA, Spiegelman D, Danby FW et al (2005) High school dietary intake and acne. J Am Acad Dermatol 52:207–211

    Article  PubMed  Google Scholar 

  2. Adebamowo CA, Spiegelman D, Berkey CS et al (2006) Milk consumption and acne in adolescent girls. Dermatology Online J 12:1–12

    Google Scholar 

  3. Adebamowo CA, Spiegelman D, Berkey CS et al (2008) Milk consumption and acne in teenaged boys. J Am Acad Dermatol 58:787–793

    Article  PubMed  Google Scholar 

  4. Allen NE, Key TJ, Appleby PN et al (2008) Animal foods, protein, calcium and prostate cancer risk: the European Prospective Investigation into Cancer and Nutrition. Br J Cancer 98:1574–1581

    Article  PubMed  CAS  Google Scholar 

  5. Al-Shobaili HA, Salem TA, Alzolibani AA et al (2012) Tumor necrosis factor-α-308 G/A and interleukin 10-1082A/G gene polymorphisms in patients with acne vulgaris. J Dermatol Sci 68:52–55

    Article  PubMed  CAS  Google Scholar 

  6. Arnberg K, Mølgaard C, Michaelsen KF et al (2012) Skim milk, whey, and casein increase body weight and whey and casein increase the plasma c-peptide concentration in overweight adolescents. J Nutr 142:2083–2090

    Article  PubMed  CAS  Google Scholar 

  7. Ben-Amitai D, Laron Z (2011) Effect of insulin-like growth factor-1 deficiency or administration on the occurrence of acne. J Eur Acad Dermatol Venereol 25:950–954

    Article  PubMed  CAS  Google Scholar 

  8. Bourne S, Jacobs A (1956) Observations on acne, seborrhoea, and obesity. Br Med J 1:1268–1270

    Article  PubMed  CAS  Google Scholar 

  9. Bowe WP, Joshi SS, Shalita AR (2010) Diet and acne. J Am Acad Dermatol 63:124–141

    Article  PubMed  Google Scholar 

  10. Bryder L (2009) From breast to bottle: a history of modern infant feeding. Endeavour 33:54–59

    Article  PubMed  Google Scholar 

  11. Chen CC, Jeon SM, Bhaskar PT et al (2010) FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell 18:592–604

    Article  PubMed  CAS  Google Scholar 

  12. Chen L, Zhang C, Yeung E et al (2011) Age at menarche and metabolic markers for type 2 diabetes in premenopausal women: the BioCycle study. J Clin Endocrinol Metab 96:E1007–E1012

    Article  PubMed  CAS  Google Scholar 

  13. Chen W, Obermayer-Pietsch B, Hong JB et al (2011) Acne-associated syndromes: models for better understanding acne pathogenesis. J Eur Acad Dermatol Venereol 25:637–646

    Article  PubMed  CAS  Google Scholar 

  14. Collier CN, Harper JC, Cafardi JA et al (2008) The prevalence of acne in adults 20 years and older. J Am Acad Dermatol 58:56–59

    Article  PubMed  Google Scholar 

  15. Conway BN, Shu XO, Zhang X et al (2012) Age at menarche, the leg length to sitting height ratio, and risk of diabetes in middle-aged and elderly Chinese men and women. PLoS One 7:e30625

    Article  PubMed  CAS  Google Scholar 

  16. Cordain L, Lindeberg S, Hurtado M et al (2002) Acne vulgaris: a disease of Western civilization. Arch Dermatol 138:1584–1590

    Article  PubMed  Google Scholar 

  17. Crowe FL, Key TJ, Allen NE et al (2009) The association between diet and seum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in the European Perspective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev 18:1333–1340

    Article  PubMed  CAS  Google Scholar 

  18. Dan HC, Cooper MJ, Cogswell PC et al (2008) Akt-dependent regulation of NF- {kappa}B is controlled by mTOR and Raptor in association with IKK. Genes Dev 22:1490–1500

    Article  PubMed  CAS  Google Scholar 

  19. Danby FW (2010) Nutrition and acne. Clin Dermatol 28:598–604

    Article  PubMed  Google Scholar 

  20. Danby FW (2011) New, relevant information and innovative interventions in the management of acne. G Ital Dermatol Venereol 146:197–210

    PubMed  CAS  Google Scholar 

  21. Danby FW (2011) Acne: diet and acneigenesis. Indian Dermatol Online 2:2–5

    Article  Google Scholar 

  22. Dann SG, Selvaraj A, Thomas G (2007) mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med 13:252–259

    Article  PubMed  CAS  Google Scholar 

  23. Del Prete M, Mauriello MC, Faggiano A et al (2012) Insulin resistance and acne: a new risk factor for men? Endocrine 42:555–560

    Article  CAS  Google Scholar 

  24. Di Landro A, Cazzaniga S, Parazzini F et al (2012) Family history, body mass index, selected dietary factors, menstrual history, and risk of moderate to severe acne in adolescents and young adults. J Am Acad Dermatol 67:1129–1135

    Article  Google Scholar 

  25. Dreyfus JG, Lutsey PL, Huxley R et al (2012) Age at menarche and risk of type 2 diabetes among African-American and white women in the Atherosclerosis Risk in Communities (ARIC) study. Diabetologia 55:2371–2380

    Article  PubMed  CAS  Google Scholar 

  26. Esterle L, Sabatier J-P, Guillon-Metz F et al (2008) Milk, rather than other foods, is associated with vertebral bone mass and circulating IGF-1 in female adolescents. Osteoporos Int 20:567–575

    Article  PubMed  CAS  Google Scholar 

  27. Fang Z, Zhang T, Dizzeyi N et al (2012) Androgen receptor enhances p27 degradation in prostate cancer cells through rapid and selective TORC2 activation. J Biol Chem 287:2090–2098

    Article  PubMed  CAS  Google Scholar 

  28. Farnfield MM, Carey KA, Gran P et al (2009) Whey protein ingestion activates mTOR-dependent signalling after resistance exercise in young men: a double-blinded randomized controlled trial. Nutrients 1:263–275

    Article  PubMed  CAS  Google Scholar 

  29. Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285:14071–14077

    Article  PubMed  CAS  Google Scholar 

  30. Ghodsi SZ, Orawa H, Zouboulis CC (2009) Prevalence, severity and severity risk factors of acne in high school pupils: a community-based study. J Invest Dermatol 129: 2136–2141

    Article  PubMed  CAS  Google Scholar 

  31. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M et al (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3:1–9

    Article  CAS  Google Scholar 

  32. Halvorsen JA, Vleugels RA, Bjertness E, Lien L (2012) A population-based study of acne and body mass index in adolescents. Arch Dermatol 148:131–132

    Article  PubMed  Google Scholar 

  33. Hara K, Yonezawa K, Wenig QP et al (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273:14484–14494

    Article  PubMed  CAS  Google Scholar 

  34. Harries ML, Walker JM, Williams DM et al (1997) Changes in the male voice at puberty. Arch Dis Child 77:445–447

    Article  PubMed  CAS  Google Scholar 

  35. Hay N (2011) Interplay between FOXO, TOR, and Akt. Biochim Biophys Acta 1813:1965–1970

    Article  PubMed  CAS  Google Scholar 

  36. Hoppe C, Udam TR, Lauritzen L et al (2004) Animal protein intake, serum insulin-like growth factor-I, and growth in healthy 2.5-y-old Danish children. Am J Clin Nutr 80:447–452

    PubMed  CAS  Google Scholar 

  37. Hoppe C, Molgaard C, Vaag A et al (2005) High intakes of milk, but not meat, increase s-insulin and insulin resistance in 8-year-old boys. Eur J Clin Nutr 59:393–398

    Article  PubMed  CAS  Google Scholar 

  38. Hoppe C, Mølgaard C, Dalum C et al (2009) Differential effects of casein versus whey on fasting plasma levels of insulin, IGF-1 and IGF-1/IGFBP- 3: results from a randomized 7-day supplementation study in prepubertal boys. Eur J Clin Nutr 63:1076–1083

    Article  PubMed  CAS  Google Scholar 

  39. Hoyt G, Hickey MS, Cordain L (2005) Dissociation of the glycaemic and insulinaemic responses to whole and skimmed milk. Br J Nutr 93:175–177

    Article  PubMed  CAS  Google Scholar 

  40. Huang H, Tindall DJ (2007) Dynamic FoxO transcription factors. J Cell Sci 120:2479–2487

    Article  PubMed  CAS  Google Scholar 

  41. Inoki K, Li Y, Zhu T et al (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657

    Article  PubMed  CAS  Google Scholar 

  42. Ismail NH, Abdul Manaf Z, Azizan NZ (2012) High glycemic load, milk and ice cream consumption are related to acne vulgaris in Malaysian young adults: a case control study. BMC Dermatol 12:13

    Article  PubMed  CAS  Google Scholar 

  43. James WD (2005) Clinical practice: acne. N Engl J Med 352:1463–1472

    Article  PubMed  CAS  Google Scholar 

  44. Jung JY, Yoon MY, Min SU et al (2010) The influence of dietary patterns on acne vulgaris in Koreans. Eur J Dermatol 20:768–772

    PubMed  Google Scholar 

  45. Juul A, Bang P, Hertel NT et al (1994) Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. J Clin Endocrinol Metab 78:744–752

    Article  PubMed  CAS  Google Scholar 

  46. Kwon G, Marshall CA, Pappan KL et al (2004) Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets. Diabetes 53:S225–S232

    Article  PubMed  CAS  Google Scholar 

  47. Kwon HH, Yoon JY, Hong JS et al (2012) Clinical and histological effect of a low glycaemic load diet in treatment of acne vulgaris in Korean patients: a randomized, controlled trial. Acta Derm Venereol 92:241–246

    Article  PubMed  CAS  Google Scholar 

  48. Lee DF, Kuo HP, Chen CT et al (2007) IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130:440–455

    Article  PubMed  CAS  Google Scholar 

  49. Leitzmann MF, Rohrmann S (2012) Risk factors for the onset of prostatic cancer: age, location, and behavorial correlates. Clin Epidemiol 4:1–11

    PubMed  Google Scholar 

  50. Lindeberg S, Eliasson M, Lindahl B, Ahrén B (1999) Low serum insulin in traditional Pacific Islanders – the Kitava study. Metabolism 48:1216–1219

    Article  PubMed  CAS  Google Scholar 

  51. Lucky AW, Biro FM, Huster GA et al (1994) Acne vulgaris in premenarchal girls. An early sign of puberty associated with rising levels of dehydroepiandrosterone. Arch Dermatol 130:308–314

    Article  PubMed  CAS  Google Scholar 

  52. Lucky AW, Biro FM, Simbartl LA et al (1997) Predictors of severity of acne vulgaris in young adolescent girls: results of a five-year longitudinal study. J Pediatr 130:30–39

    Article  PubMed  CAS  Google Scholar 

  53. McCormack SE, Shaham O, McCarthy MA et al (2013) Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes 8:52–61

    Article  PubMed  CAS  Google Scholar 

  54. McDaniel ML, Marshall CA, Pappan KL, Kwon G (2002) Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic β-cells. Diabetes 51:2877–2885

    Article  PubMed  CAS  Google Scholar 

  55. Melnik B (2010) Acne vulgaris. Role of diet. Hautarzt 61:115–125

    Article  PubMed  CAS  Google Scholar 

  56. Melnik BC (2009) Milk – the promoter of chronic Western diseases. Med Hypotheses 72:631–639

    Article  PubMed  CAS  Google Scholar 

  57. Melnik B (2009) Milk consumption: aggravating factor of acne and promoter of chronic diseases of Western societies. J Dtsch Dermatol Ges 7:364–370

    PubMed  Google Scholar 

  58. Melnik BC (2012) Leucine signalling in the pathogenesis of type 2 diabetes and obesity. World J Diabetes 15:38–53

    Article  Google Scholar 

  59. Melnik BC (2012) Excessive leucine-mTORC1-sigalling of cow milk- based infant formula: the missing link to understand early childhood obesity. J Obes 2012:ID197652

    Google Scholar 

  60. Melnik B (2012) Dietary intervention in acne: attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol 4:20–32

    Article  PubMed  CAS  Google Scholar 

  61. Melnik BC, John SM, Carrera-Bastos P, Cordain L (2012) The impact of cow’s milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Nutr Metab (Lond) 9:74

    Google Scholar 

  62. Mendoza N, Galliano D, Salamanca A et al (2010) Lowering the age at menarche and risk of early menarche in a population of Spanish postmenopausal women during the past two decades. Menopause Int 16:111–114

    Article  PubMed  Google Scholar 

  63. Mieulet V, Lamb RF (2010) Tuberous sclerosis complex: linking cancer to metabolism. Trends Mol Med 16:329–335

    Article  PubMed  CAS  Google Scholar 

  64. Nilsson M, Stenberg M, Frid AK et al (2004) Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am J Clin Nutr 80:1246–1253

    PubMed  CAS  Google Scholar 

  65. Nilsson M, Holst JJ, Björck IM (2007) Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr 85:996–1004

    PubMed  CAS  Google Scholar 

  66. Pang Y, He CD, Liu Y et al (2008) Combination of short CAG and GGN repeats in the androgen receptor gene is associated with acne risk in North East China. J Eur Acad Dermatol Venereol 22:1445–1451

    Article  PubMed  CAS  Google Scholar 

  67. Paoli A, Grimaldi K, Toniolo L et al (2012) Nutrition and acne: therapeutic potential of ketogenic diets. Skin Pharmacol Physiol 25:111–117

    Article  PubMed  CAS  Google Scholar 

  68. Pettersson A, Kasperzyk JL, Kenfield SA et al (2012) Milk and dairy consumption among men with prostate cancer and risk of metastases and prostate cancer death. Cancer Epidemiol Biomarkers Prev 21:428- 436

    Article  PubMed  Google Scholar 

  69. Pierce MB, Kuh D, Hardy R (2012) The role of BMI across the life course in the relationship between age at menarche and diabetes, in a British Birth Cohort. Diabet Med 29:600–603

    Article  PubMed  CAS  Google Scholar 

  70. Porstmann T, Santos CR, Lewis C et al (2009) A new player in the orchestra of cell growth: SREBP activity is regulated by mTORC1 and contributes to the regulation of cell and organ size. Biochem Soc Trans 37:278–283

    Article  PubMed  CAS  Google Scholar 

  71. Proud CG (2011) mTOR signalling in health and disease. Biochem Soc Trans 39:431–436

    Article  PubMed  CAS  Google Scholar 

  72. Rich-Edwards JW, Ganmaa D, Pollak MN et al (2007) Milk consumption and the prepubertal somatotropic axis. Nutr J 6:28

    Article  PubMed  CAS  Google Scholar 

  73. Salehi A, Gunnerud U, Muhammed SJ et al (2012) The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells. Nutr Metab (Lond) 9:48

    Google Scholar 

  74. Sawaya ME, Shalita AR (1998) Androgen receptor polymorphism (CAG repeat lengths) in androgenetic alopecia, hirsutism, and acne. J Cutan Med Surg 3:9–15

    PubMed  CAS  Google Scholar 

  75. Silverberg NB (2012) Whey protein precipitating moderate to severe acne flares in 5 teenaged athlethes. Cutis 90:70–72

    PubMed  Google Scholar 

  76. Simonart T (2012) Acne and whey protein supplementation among bodybuilders. Dermatology 225:256–258

    Article  PubMed  CAS  Google Scholar 

  77. Skroza N, Tolino E, Semyonov L et al (2012) Mediterranean diet and familial dysmetabolism as factors influencing the development of acne. Scand J Public Health 40:466–474

    Article  PubMed  Google Scholar 

  78. Smith RN, Mann NJ, Braue A et al (2007) A low-glycemic-load diet improves symptoms in acne vulgaris patients: a randomized controlled trial. Am J Clin Nutr 86:107–115

    PubMed  CAS  Google Scholar 

  79. Smith RN, Mann NJ, Braue A et al (2007) The effect of a high-protein, low glycemic-load diet versus a conventional, high glycemic-load diet on biochemical parameters associated with acne vulgaris: a randomized, investigator-masked, controlled trial. J Am Acad Dermatol 57:247–256

    Article  PubMed  Google Scholar 

  80. Smith RN, Braue A, Varigos GA, Mann NJ (2008) The effect of a low glycemic load diet on acne vulgaris and the fatty acid composition of skin surface triglycerides. J Dermatol Sci 50:41–52

    Article  PubMed  CAS  Google Scholar 

  81. Smith R, Mann NJ, Mäkeläinen H et al (2008) A pilot study to determine the short-term effects of a low glycemic load diet on hormonal markers of acne: a nonrandomized, parallel, controlled feeding trial. Mol Nutr Food Res 52:718–726

    Article  PubMed  CAS  Google Scholar 

  82. Song Y, Chavarro JE, Cao Y et al (2013) Whole milk intake is associated with prostate cancer-specific mortality among U.S. male physicians. J Nutr 143:189–196

    Article  PubMed  CAS  Google Scholar 

  83. Spencer EH, Ferdowsian HR, Barnard ND (2009) Diet and acne: a review of the evidence. Int J Dermatol 48:339–347

    Article  PubMed  CAS  Google Scholar 

  84. Stöckl D, Meisinger C, Peters A et al (2011) Age at menarche and its association with the metabolic syndrome and its components: results from the KORA F4 study. PLoS One 6:e26076

    Article  PubMed  CAS  Google Scholar 

  85. Sutcliffe S, Giovannucci E, Isaacs WB et al (2007) Acne and risk of prostate cancer. Int J Cancer 121:2688–2692

    Article  PubMed  CAS  Google Scholar 

  86. Szabó K, Kemény L (2011) Studying the genetic predisposing factors in the pathogenesis of acne vulgaris. Hum Immunol 72:766–773

    Article  PubMed  CAS  Google Scholar 

  87. Szabó K, Tax G, Teodorescu-Brinzeu D et al (2011) TNFα gene polymorphisms in the pathogenesis of acne vulgaris. Arch Dermatol Res 303:19–27

    Article  PubMed  CAS  Google Scholar 

  88. Szymanski KM, Wheeler DC, Mucci LA (2010) Fish consumption and prostate cancer risk: a review and meta-anlysis. Am J Clin Nutr 92:1223–1233

    Article  PubMed  CAS  Google Scholar 

  89. Tasil L, Turgut S, Kacar N et al (2013) Insulin-like growth factor-I gene polymorphism in acne vulgaris. J Eur Acad Dermatol Venereol 27:254–257

    Article  Google Scholar 

  90. Torfadottir JE, Steingrimsdottir L, Mucci L et al (2012) Milk intake in early life and risk of advanced prostate cancer. Am J Epidemiol 175:144–153

    Article  PubMed  Google Scholar 

  91. Tsai MC, Chen WC, Cheng YW et al (2006) Higher body mass index is a significant risk factor for acne formation in schoolchildren. Eur J Dermatol 16:251–253

    PubMed  Google Scholar 

  92. Van der Heide LP, Hoekman MF, Smid MP (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380:297–309

    Article  Google Scholar 

  93. Veith WB, Silverberg NB (2011) The association of acne vulgaris with diet. Cutis 88:84–91

    PubMed  Google Scholar 

  94. Von Post-Skagegard M, Vessby B, Karlström B (2006) Glucose and insulin responses in healthy women after intake of composite meals containing cod-, milk-, and soy protein. Eur J Clin Nutr 60:949–954

    Article  CAS  Google Scholar 

  95. Wiley AS (2010) Dairy and milk consumption and child growth: Is BMI involved? An analysis of NHANES 1999–2004. Am J Hum Biol 22:517–525

    Article  PubMed  Google Scholar 

  96. Wiley AS (2011) Milk intake and total dairy consumption: associations with early menarche in NHANES 1999–2004. PLoS One 6:e14685

    Article  PubMed  CAS  Google Scholar 

  97. Yang J, Chi Y, Burkhardt BR et al (2010) Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev 68:270–279

    Article  PubMed  Google Scholar 

  98. Yang Z, Yu H, Cheng B et al (2009) Relationship between the CAG repeat polymorphism in the androgen receptor gene and acne in the Han ethnic group. Dermatology 218:302–306

    Article  PubMed  CAS  Google Scholar 

  99. Zick Y (2005) Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE 268:pe4

    Google Scholar 

  100. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  PubMed  CAS  Google Scholar 

  101. Cordain L (2006) The dietary cure for acne. The paleo diet. LLC, Fort Collins

  102. Burris J, Rietkerk W, Woolf K (2013) Acne: the role of medical nutrition therapy. J Acad Nutr Diet 113(3):416–430

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.C. Melnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melnik, B. Akne und Ernährung. Hautarzt 64, 252–262 (2013). https://doi.org/10.1007/s00105-012-2461-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-012-2461-5

Schlüsselwörter

Keywords

Navigation