Skip to main content

Advertisement

Log in

Molekulargenetik in der dermatologischen Diagnostik

The role of molecular genetics in dermatologic diagnosis

  • Übersichten
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Molekulargenetische Methoden ermöglichten in den letzten Jahrzehnten eine immense Zunahme unseres Wissens über biologische Vorgänge in gesunden Individuen und verbesserten unser Verständnis über pathophysiologische Prozesse bei zahlreichen dermatologischen Krankheiten. Diese Methoden wurden initial im Rahmen der molekularbiologischen bzw. genetischen Grundlagenforschung entwickelt und erfahren zunehmend eine translative Anwendung als anspruchsvolles zusätzliches Diagnostikum. Hierzu zählen Immunhistochemie, Polymerasekettenreaktion (PCR), Fluoreszenz-in-situ-Hybridisierung (FISH), Chromogen-in-situ-Hybridisierung (CISH), komparative genomische Hybridisierung (CGH) und Mikroarray-Technologie. Die Immunhistochemie und PCR-Analyse sind bereits zu einem Grad standardisierbar, dass sie für die Routinediagnostik zahlreicher dermatologischer Krankheiten eingesetzt werden können. Andere wie FISH und CISH erfahren derzeit eine Etablierung für spezielle Indikationen bei einigen Großlaboratorien, wohingegen CGH und Mikroarrays noch einzelnen wenigen Labors vorbehalten sind, die sich mit sehr speziellen Fragestellungen auseinandersetzen. Diese modernen Methoden haben das Potenzial, als Ergänzung zur traditionellen Diagnostik gerade in solchen Fällen wichtige Informationen zu liefern, in denen die konventionelle histomorphologische Beurteilung an ihre Grenzen stößt. Darüber hinaus bieten sie die Möglichkeit, Aussagen über Prognose, Verlauf und Therapieoptionen zu machen.

Abstract

Modern molecular techniques have tremendously expanded our knowledge about the biologic processes in healthy individuals as well as our understanding about the pathologic events in an increasing number of dermatological diseases. These technologies initially came from basic molecular biology and genetic research but have become firmly anchored in clinical diagnosis approaches. Included in this group are immunohistochemistry (IHC), polymerase chain reaction (PCR), fluorescence in situ hybridization (FISH), chromogen in situ hybridization (CISH), comparative genomic hybridization (CGH), and microarray technology. IHC and PCR already belong to the armamentarium for routine daily diagnostics due to their high degree of standardization and reproducibility, ease of use and relatively low costs. Others like FISH and CISH are currently employed for specific indications in a growing number of larger laboratories, whereas CGH and microarray technology still remain in the hands of a few highly specialized laboratories. These new ancillary methods will help to improve diagnostic accuracy particularly in cases in which conventional histopathology is ambiguous. In addition, they will provide new and important information concerning the prognosis, progression and response rate to therapies in several particular malignant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Arcellana-Panlilio M, Robbins SM (2002) Cutting-edge technology I: global gene expression profiling using DNA microarray. Am J Physiol Gastrointest Liver Physiol 282:G397–G402

    PubMed  CAS  Google Scholar 

  2. Bastian BC (2004) Molecular genetics of melanocytic neoplasia: practical applications for diagnosis. Pathology 36:458–461

    Article  PubMed  CAS  Google Scholar 

  3. Bastian BC, Xiong J, Frieden IJ et al (2002) Genetic changes in neoplasms arising in congenital melanocytic nevi: differences between nodular proliferations and melanomas. Am J Pathol 161:1163–1169

    Article  PubMed  CAS  Google Scholar 

  4. Bauer J, Bastian B (2005) Genomic analysis of melanocytic neoplasia. Adv Dermatol 21:81–99

    Article  PubMed  Google Scholar 

  5. Bittner M, Melzer P, Chen Y et al (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540

    Article  PubMed  CAS  Google Scholar 

  6. Brandtzaeg P (1998) The increasing power of immunohistochemistry and immunocytochemistry. J Immunol Methods 216:49–67

    Article  PubMed  CAS  Google Scholar 

  7. Braun-Falco O (1954) Histochemische und morphologische Studien an normaler und pathologisch veränderter Haut. Arch Dermatol Syph 198:111–198

    Article  CAS  Google Scholar 

  8. Burg G, Kempf W, Cozzio A et al (2005) WHO/EORTC classificaton of cutaneous lymphomas 2005: histological and molecular aspects. J Cut Pathol 32:647–674

    Article  Google Scholar 

  9. Carlson JA, Ross JS, Slominski A et al (2005) Molecular diagnostics in melanoma. J Am Acad Dermatol 52:743–775

    Article  PubMed  Google Scholar 

  10. Carr K, Bittner M, Trent J (2003) Gene-expression profiling in human cutaneous melanoma. Oncogene 22:3076–3080

    Article  PubMed  CAS  Google Scholar 

  11. Cerroni L (2006) Lymphoproliferative lesions of the skin. J Clin Pathol 59:813–826

    Article  PubMed  CAS  Google Scholar 

  12. Davids V, Kidson SH, Hanekom GS (2003) Melanoma patient staging: histopathological versus molecular evaluation of the sentinel node. Melanoma Res 13:313–324

    Article  PubMed  CAS  Google Scholar 

  13. Eichmuller S, Usener D, Thiel D et al (2003) Tumor-specific antigens in cutaneous T-cell lymphoma: expression and sero-reactivity. Int J Cancer 104:482–487

    Article  PubMed  CAS  Google Scholar 

  14. Evans T, Boonchai W, Shanely S et al (2000) The spectrum of patched mutations in a collection of Australian basal cell carcinomas. Hum Mutat 16:43–48

    Article  PubMed  CAS  Google Scholar 

  15. Gibson UE, Heid CA, Williams PM (1996) A novel method for real-time quantitative RT-PCR. Genome Res 6:995–1001

    Article  PubMed  CAS  Google Scholar 

  16. Halait H, Demartin K, Shah S et al (2012) Analytical performance of a real-time PCR-based assay for V600 mutations in BRAF gene. Used as the companion diagnostic test for the novel BRAF inhibitor Vemurafenib in metastatic melanoma. Diagn Mol Pathol 21:1–8

    Article  PubMed  CAS  Google Scholar 

  17. Hammock L, Cohen C, Carlson G et al (2006) Chromogenic in situ hybridization analysis of melastatin mRNA expression in melanomas from American Joint Committee on Cancer stage I and II patients with recurrent melanoma. J Cutan Pathol 33:599–607

    Article  PubMed  CAS  Google Scholar 

  18. Harvell JD, Kohler S, Zhu S et al (2004) High-resolution array-based comparative genomic hybridization for distinguishing paraffin-embedded Spitz nevi and melanomas. Diagn Mol Pathol 13:22–25

    Article  PubMed  Google Scholar 

  19. Henrique R, Azevedo R, Bento MJ et al (2000) Prognostic value of Ki-67 expression in localized cutaneous malignant melanoma. J Am Acad Dermatol 43:991–1000

    Article  PubMed  CAS  Google Scholar 

  20. Hutchin ME, Kariapper MS, Grachtchouk M et al (2005) Sustained hedgehog signalling is required for basal cell carcinoma proliferation and survival: conditional skin tumorgenesis recapitulates the hair growth cycle. Genes Dev 19:214–223

    Article  PubMed  CAS  Google Scholar 

  21. Ida M, Kageyama S, Sato H et al (2000) Characterization of acyclovir susceptibility and genetic stability of varicella-zoster viruses isolated during acyclovir therapy. J Dermatol Sci 23:63–73

    Article  PubMed  CAS  Google Scholar 

  22. Johnson RL, Rothman AL, Xie J et al (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1671

    Article  PubMed  CAS  Google Scholar 

  23. Jonas D, Speck M, Dascher FD, Grundmann H (2002) Rapid PCR-based identification of methicillin-resistant Staphylococcus aureus from screening swabs. J Clin Microbiol 40:1821–1823

    Article  PubMed  CAS  Google Scholar 

  24. Kallioniemi A, Kallioniemi OP, Sudar D et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821

    Article  PubMed  CAS  Google Scholar 

  25. Konz B (2002) Fortschritte der Dermatologie: Werksverzeichnis Professor Dr. Dr. h.c. mult. Otto Braun-Falco. Steinkopff, Darmstadt, S 9–14

  26. Larue L, Delmas V (2006) The WNT/Beta-catenin pathway in melanoma. Front Biosci 11:733–742

    Article  PubMed  CAS  Google Scholar 

  27. Levsky JM, Singer RH (2003) Fluorescence in situ hybridization: past, present and future. J Cell Sci 116:2833–2838

    Article  PubMed  CAS  Google Scholar 

  28. Maladelo JL, Timmerman L, Fridlyand J, Bastian BC (2004) Mechanisms of cell-cycle arrest in Spitz nevi with constitutive activation of MAP-kinase pathway. Am J Pathol 164:1783–1787

    Article  Google Scholar 

  29. Martinez ST, Hoon DSB (2005) Molecular markers in malignant cutaneous melanoma: gift horse or one-trick pony? J Cell Biochem 96:473–483

    Article  PubMed  CAS  Google Scholar 

  30. Mullis K, Faloona F, Scharf S et al (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–273

    Article  PubMed  CAS  Google Scholar 

  31. Quackenbush J (2006) Microarray analysis and tumor classification. New Eng J Med 354:2463–2472

    Article  PubMed  CAS  Google Scholar 

  32. Ramos-Vara JA (2005) Technical aspects of immunohistochemistry. Vet Pathol 42:405–426

    Article  PubMed  CAS  Google Scholar 

  33. Reifenberger J, Wolter M, Knobbe CB et al (2005) Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 152:43–51

    Article  PubMed  CAS  Google Scholar 

  34. Romero P, Cerottini JC, Speiser DE (2006) The human T cell response to melanoma antigens. Adv Immunol 92:187–224

    Article  PubMed  CAS  Google Scholar 

  35. Sellheyer K, Belbin TJ (2004) DNA microarrays: from structural genomics to functional genomics. The applications of gene chips in dermatology and dermatopathology. J Am Acad Dermatol 51:681–692

    Article  PubMed  Google Scholar 

  36. Sheffield MV, Yee H, Dorvault CC et al (2002) Comparison of five antibodies as markers in the diagnosis of melanoma in cytologic preparations. Am J Clin Pathol 118:930–936

    Article  PubMed  Google Scholar 

  37. Slominski A (2002) Coming of age of melanogenesis-related proteins. Arch Pathol Lab Med 62:3581–3586

    Google Scholar 

  38. Speicher MR, Carter NP (2005) The new cytogenetics: blurring the boundaries with molecular biology. Nature Rev Genet 6:782–792

    Article  PubMed  CAS  Google Scholar 

  39. Sra KK, Babb-Tarbox M, Aboutalebi S et al (2005) Molecular diagnosis of cutaneous diseases. Arch Dermatol 141:225–241

    Article  PubMed  CAS  Google Scholar 

  40. Sra KK, Torres G, Rady P et al (2005) Molecular diagnosis of infectious diseases in dermatology. J Am Acad Dermatol 53:749–765

    Article  PubMed  Google Scholar 

  41. Taylor CR, Levenson RM (2006) Quantification of immunohistochemistry-issues concerning methods, utility and semiquantitative assessment II. Histopathology 49:411–424

    Article  PubMed  CAS  Google Scholar 

  42. Torres MJ, Criado A, Ruiz M et al (2003) Improved real-time PCR for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical isolates. Diagn Microbiol Infect Dis 45:207–212

    Article  PubMed  CAS  Google Scholar 

  43. Walker RA (2006) Quantification of immunohistochemistry-issues concerning methods, utility and semiquantitative assessment I. Histopathol 49:406–410

    Article  CAS  Google Scholar 

  44. Yazdi AS, Palmedo G, Flaig MJ et al (2003) Mutations of the BRAF gene in benign and malignant melanocytic lesions. J Invest Dermatol 121:1160–1162

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Keine Angaben.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Braun-Falco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun-Falco, M., Ruzicka, T. Molekulargenetik in der dermatologischen Diagnostik. Hautarzt 63 (Suppl 1), 45–52 (2012). https://doi.org/10.1007/s00105-011-2295-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-011-2295-6

Schlüsselwörter

Keywords

Navigation