Skip to main content
Log in

Neuropeptide und ihre Rezeptoren als molekulare Grundlage der empfindlichen Haut

Neuropeptides and their receptors as a molecular explanation for sensitive skin

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Die sog. empfindliche Haut (engl. „sensitive skin“) ist vermutlich eher ein Symptom, bestehend aus verschiedenen physiologischen Reaktionen, als eine eigene Entität. Gemäß epidemiologischen Studien leiden bis zu 50% aller Erwachsenen an verschiedenen Symptomen empfindlicher Gesichtshaut wie Kribbeln, Brennen, Prickeln, Schmerzen oder Pruritus. Diese Sensationen können von Rezeptoren, die auf Nervenfasern und auch in Keratinozyten exprimiert sind, vermittelt werden. Zum Beispiel ist der Wärmerezeptor TRPV1 an der kutanen Nozizeption beteiligt und kann bei Hitzeempfinden auch ein Brenngefühl vermitteln. Des Weiteren können Neurotrophine und exogene Einflussfaktoren wie Stress eine biologische Bedeutung haben, was in diesem Übersichtsbeitrag diskutiert wird.

Abstract

The concept of sensitive skin represents a symptom of physiological reactions rather than a disease entity. According to epidemiological studies, up to 50% of adults report on sensitivity of the face with various distinctive symptoms such as prickling, burning, tingling, pain or itching. These sensations can be mediated by receptors expressed on neurons and keratinocytes. The heat receptor TRPV1 is for example involved in nociception and mediates not only warmth but also burning. Furthermore, neurotrophins and exogenic factors such as stress may have a biological role as discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Misery L, Myon E, Martin N et al (2007) Sensitive skin: psychological effects and seasonal changes. J Eur Acad Dermatol Venereol 21:620–628

    PubMed  CAS  Google Scholar 

  2. Morizot T, Guinot C, Lopez S et al (2000) Sensitive skin: analysis of symptoms, perceived causes and possible mechanisms. Cosmetic Toil 115:83–88

    Google Scholar 

  3. Berardesca E, Fluhr JW, Maibach HI (2006) What is sensitive skin? In: Berardesca E, Fluhr JW, Maibach HI (Hrsg) Sensitive skin syndrome. Taylor & Francis, New York, S 1–6

  4. Muizzuddin N, Marenus KD, Maes DH (1998) Factors defining sensitive skin and its treatment. Am J Contact Dermat 9:170–175

    Article  PubMed  CAS  Google Scholar 

  5. Saint-Martory C, Roguedas AM, Sibaud V et al (2008) Sensitive skin is not limited to the face. Br J Dermatol 158:130–133

    PubMed  CAS  Google Scholar 

  6. Misery L, Sibaud V, Ambronati M et al (2008) Sensitive scalp: Does this condition exist? An epidemiological study. Contact Dermatitis 58:234–238

    Article  PubMed  Google Scholar 

  7. Yokota T, Matsumoto M, Sakamaki T et al (2003) Classification of sensitive skin and development of a treatment system appropriate for each group. IFSCC Mag 6:303–307

    Google Scholar 

  8. Querleux B, Dauchot K, Jourdain R, Bastien P (2008) Neural basis of sensitive skin: an fMRI study. Skin Res Technol 14(4):454–461

    Article  PubMed  Google Scholar 

  9. Primavera G, Berardesca E (2005) Sensitive skin: mechanisms and diagnosis. Int J Cosmet Sci 27:1–10

    Article  PubMed  CAS  Google Scholar 

  10. Farage MA (2008) Enhancement of visual scoring of skin irritant reactions using cross-polarized light and parallel-polarized light. Contact Dermatitis 58:147–155

    Article  PubMed  Google Scholar 

  11. Farage MA, Maibach H (2007) Cumulative skin irritation test of sanitary pads in sensitive skin and normal skin population. Cutan Ocul Toxicol 26:37–43

    Article  PubMed  Google Scholar 

  12. Bjornberg A (1975) Skin reactions to primary irritants in irritants in men and women. Acta Derm Venereol 55:191–194

    PubMed  CAS  Google Scholar 

  13. Gazerani P, Wang K, Cairns BE et al (2006) Effects of subcutaneous administration of glutamate on pain, sensitization and vasomotor responses in healthy men and women. Pain 124:338–348

    Article  PubMed  CAS  Google Scholar 

  14. Wohrl S, Hemmer W, Focke M et al (2003) Patch testing in children, adults, and the elderly: influence of age and sex on sensitization patterns. Pediatr Dermatol 20:119–123

    Article  PubMed  Google Scholar 

  15. Misery L, Myon E, Martin N et al (2005) Sensitive skin in France: an epidemiological approach. Ann Dermatol Venereol 132:425–429

    Article  PubMed  CAS  Google Scholar 

  16. Marriott M, Holmes J, Peters L et al (2005) The complex problem of sensitive skin. Contact Dermatitis 53:93–99

    Article  PubMed  Google Scholar 

  17. Jourdain R, Maibach HI, Bastien P et al (2009) Ethnic variations in facial skin neurosensitivity assessed by capsaicin detection thresholds. Contact Dermatitis 61:325–331

    Article  PubMed  CAS  Google Scholar 

  18. Kompaore F, Marty JP, Dupont C (1993) In vivo evaluation of the stratum corneum barrier function in Blacks, Caucasians and Asians with two noninvasive methods. Skin Pharmacol 6:200–207

    Article  PubMed  CAS  Google Scholar 

  19. Pinto P, Rosado C, Parreirão C et al (2011) Is there any barrier impairment in sensitive skin? A quantitative analysis of sensitive skin by mathematical modeling of transepidermal water loss desorption curves. Skin Res Technol 17:181–185

    Article  PubMed  Google Scholar 

  20. Willis CM, Shaw S, De Lacharrière O et al (2001) Sensitive skin: an epidemiological study. Br J Dermatol 145:258–263

    Article  PubMed  CAS  Google Scholar 

  21. Loffler H, Effendy I (1999) Skin susceptibility of atopic individuals. Contact Dermatitis 40:239–242

    Article  PubMed  CAS  Google Scholar 

  22. Lonne-Rahm S, Berg M, Mårin P et al (2004) Atopic dermatitis, stinging, and effects of chronic stress: a pathocausal study. J Am Acad Dermatol 51:899–905

    Article  PubMed  Google Scholar 

  23. Simion FA, Rhein LD, Morrison BM et al (1995) Self-perceived sensory responses to soap and synthetic detergent bars correlate with clinical signs of irritation. J Am Acad Dermatol 32:205–211

    Article  PubMed  CAS  Google Scholar 

  24. Basketter DA, Wilhelm KP (1996) Studies on non-immune immediate contact reactions in an unselected population. Contact Dermatitis 35:237–240

    Article  PubMed  CAS  Google Scholar 

  25. Aramaki J, Kawana S, Effendy I et al (2002) Differences of skin irritation between Japanese and European women. Br J Dermatol 146:1052–1056

    Article  PubMed  CAS  Google Scholar 

  26. Johnson AW, Page DJ (1995) Making sense of sensitive skin. Poster 700 International Federation of Society Cosmet. Chemists

  27. Lee CH, Maibach HI (1995) The sodium lauryl sulfate model: an overview. Contact Dermatitis 33:1–7

    Article  PubMed  Google Scholar 

  28. Cua AB, Wilhelm KP, Maibach HI (1990) Cutaneous sodium lauryl sulphate irritation potential: age and regional variability. Br J Dermatol 123:607–613

    Article  PubMed  CAS  Google Scholar 

  29. Farage MA, Katsarou A, Maibach HI (2006) Sensory, clinical and physiological factors in sensitive skin: a review. Contact Dermatitis 55:1–14

    Article  PubMed  Google Scholar 

  30. Seidenari S, Francomano M, Mantavoni L (1998) Baseline biophysical parameters in subjects with sensitive skin. Contact Dermatitis 38:311–315

    Article  PubMed  CAS  Google Scholar 

  31. Ikoma A, Steinhoff M, Ständer S et al (2006) Neurobiology of pruritus. Nat Rev Neurosci 7:535–547

    Article  PubMed  CAS  Google Scholar 

  32. Denda M, Nakatani M, Ikeyama K et al (2007) Epidermal keratinocytes as the forefront of the sensory system. Exp Dermatol 16:157–161

    Article  PubMed  CAS  Google Scholar 

  33. Matsushima H, Yamada N, Matsue H et al (2004) The effects of endothelin-1 on degranulation, cytokine, and growth factor production by skin-derived mast cells. Eur J Immunol 34:1910–1919

    Article  PubMed  CAS  Google Scholar 

  34. Khodorova A, Montmayeur JP, Strichartz G (2009) Endothelin receptors and pain. J Pain 10(1):4–28

    Article  PubMed  CAS  Google Scholar 

  35. Namer B, Hilliges M, Orstavik K et al (2008) Endothelin1 activates and sensitizes human C-nociceptors. Pain 137:41–49

    Article  PubMed  CAS  Google Scholar 

  36. Mujenda FH, Duarte AM, Reilly EK et al (2007) Cutaneous endothelin-A receptors elevate post-incisional pain. Pain 133:161–173

    Article  PubMed  CAS  Google Scholar 

  37. Katugampola R, Church MK, Clough GF (2000) The neurogenic vasodilator response to endothelin-1: a study in human skin in vivo. Exp Physiol 85:839–846

    Article  PubMed  CAS  Google Scholar 

  38. Metz M, Lammel V, Gibbs BF et al (2006) Inflammatory murine skin responses to UV-B light are partially dependent on endothelin-1 and mast cells. Am J Pathol 169:815–822

    Article  PubMed  CAS  Google Scholar 

  39. Trentin PG, Fernandes MB, D’Orleans-Juste P et al (2006) Endothelin-1 causes pruritus in mice. Exp Biol Med (Maywood) 231:1146–1151

    Google Scholar 

  40. Kawamata T, Ji W, Yamamoto J et al (2008) Contribution of transient receptor potential vanilloid subfamily 1 to endothelin-1-induced thermal hyperalgesia. Neuroscience 154:1067–1076

    Article  PubMed  CAS  Google Scholar 

  41. Clapham DE (2001) The TRP ion channel family. Nat Rev Neurosci 2:387–396

    Article  PubMed  CAS  Google Scholar 

  42. Nilius B (2011) TRP channels in disease. Biochim Biophys Acta 1772:805–12

    Google Scholar 

  43. Moran MM, McAlexander MA, Bíró T et al (2011) Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 10:601–620

    Article  PubMed  CAS  Google Scholar 

  44. Clapham DE (2006) TRP channels as cellular sensors. Nature 426:517–524

    Article  Google Scholar 

  45. Dhaka A, Viswanath V, Patapoutian A (2006) Trp ion channels and temperature sensation. Annu Rev Neurosci 29:135–161

    Article  PubMed  CAS  Google Scholar 

  46. Levine JD, Alessandri-Haber N (2007) TRP channels: targets for the relief of pain. Biochim Biophys Acta 1772:989–1003

    PubMed  CAS  Google Scholar 

  47. Denda M, Sokabe T, Fukumi-Tominaga T et al (2007) Effects of skin surface temperature on epidermal permeability barrier homeostasis. J Invest Dermatol 127:654–659

    Article  PubMed  CAS  Google Scholar 

  48. Guler AD, Lee H, Iida T et al (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–14

    PubMed  CAS  Google Scholar 

  49. Inoue K, Koizumi S, Fuziwara S et al (2002) Functional vanilloid receptors in cultured normal human epidermal keratinocytes. Biochem Biophys Res Commun 291:124–129

    Article  PubMed  CAS  Google Scholar 

  50. Gopinath P, Wan E, Holdcroft A et al (2005) Increased capsaicin receptor TrpV1 in skin nerve fibres and related vanilloid receptor TrpV3 and TrpV4 in keratinocytes in human breast pain. BMC Womens Health 5:2

    Article  PubMed  Google Scholar 

  51. Facer P, Casula MA, Smith GD et al (2007) Differential expression of the capsaicin receptor TrpV1 and related novel receptors TrpV3, TrpV4 and TrpM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol 7:11

    Article  PubMed  Google Scholar 

  52. Atoyan R, Shander D, Botchkareva NV (2009) Non-neuronal expression of transient receptor potential type A1 (TrpA1) in human skin. J Invest Dermatol 129:2312–2315

    Article  PubMed  CAS  Google Scholar 

  53. Caterina MJ, Schumacher MA, Tominaga M et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  54. Patapoutian A (2005) TRP Channels and thermosensation. Chem Senses 30(Suppl 1):i193–194

    Article  PubMed  CAS  Google Scholar 

  55. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  PubMed  CAS  Google Scholar 

  56. Vyklický L, Nováková-Toušová K, Benedikt J et al (2008) Calcium-dependent desensitization of vanilloid receptor TRPV1: a mechanism possibly involved in analgesia induced by topical application of capsaicin. Physiol Res 57(Suppl 3):59–68

    Google Scholar 

  57. Cesare P, McNaughton P (1996) A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci U S A 93:15435–15439

    Article  PubMed  CAS  Google Scholar 

  58. Vellani V, Mapplebeck S, Moriondo A et al (2001) Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol 534:813–825

    Article  PubMed  CAS  Google Scholar 

  59. Hu HJ, Bhave G, Gereau RW 4th (2002) Prostaglandin and protein kinase A dependent modulation of vanilloid receptor function by metabotropic glutamate receptor 5: potential mechanisms for thermal hyperalgesia. J Neurosci 22:7444–7452

    PubMed  CAS  Google Scholar 

  60. Moriyama T, Higashi T, Togashi K et al (2005) Sensitization of TrpV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 1:3

    Article  PubMed  Google Scholar 

  61. Zhang X, Huang J, McNaughton PA (2005) NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. Embo J 24:4211–4223

    Article  PubMed  CAS  Google Scholar 

  62. Bonnington JK, McNaughton PA (2003) Signalling pathways involved in the sensation of mouse nociceptive neurons by nerve growth factor. J Physiol 551:433–446

    Article  PubMed  CAS  Google Scholar 

  63. Pei L, Lin CY, Dai JP et al (2007) Facial pain induces the alteration of transient receptor potential vanilloid receptor 1 expression in rat trigeminal ganglion. Neurosci Bull 23:92–100

    Article  PubMed  CAS  Google Scholar 

  64. Tominaga M, Caterina MJ, Malmberg AB et al (1998) The cloned capsaicin receptor integrates multiple pain-produced stimuli. Neuron 21:531–543

    Article  PubMed  CAS  Google Scholar 

  65. Peier AM, Reeve AJ, Andersson DA et al (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–2049

    Article  PubMed  CAS  Google Scholar 

  66. Xu H, Ramsey IS, Kotecha SA et al (2002) TrpV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186

    Article  PubMed  CAS  Google Scholar 

  67. Smith GD, Gubthorpe MJ, Kelsell RE et al (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186–190

    Article  PubMed  CAS  Google Scholar 

  68. Moqrich A, Hwang SW, Earley TJ et al (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–1472

    Article  PubMed  CAS  Google Scholar 

  69. Huang SM, Lee H, Chung MK et al (2008) Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandine E2. J Neurosci 28:13727–13737

    Article  PubMed  CAS  Google Scholar 

  70. Yun JW, Seo JA, Jeong YS et al (2011) TrpV1 antagonists can suppress the atopic dermatitis-like symptoms by accelerating skin barrier recovery. J Dermatol Sci 62:8–15

    PubMed  CAS  Google Scholar 

  71. Story GM, Peier AM, Reeve AJ et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  PubMed  CAS  Google Scholar 

  72. Bandell M, Story GM, Hwang SW et al (2004) Noxious cold ion channel TrpA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    Article  PubMed  CAS  Google Scholar 

  73. McKemy DD, Neuhausser WM, Julius D (2002) Identification a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  PubMed  CAS  Google Scholar 

  74. Voets T, Owsinianik G, Janssens A et al (2007) TrpM8 voltage senor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 3:174–182

    Article  PubMed  CAS  Google Scholar 

  75. Chuang HH, Neuhausser WM, Julius D (2004) The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43:859–869

    Article  PubMed  CAS  Google Scholar 

  76. Xing H, Chen M, Ling J et al (2007) TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci 27:13680–13690

    Article  PubMed  CAS  Google Scholar 

  77. Jordt SE, Bautista DM, Chuang HH et al (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  PubMed  CAS  Google Scholar 

  78. Vay L, Gu C, MaNaughton PA (2011) The thermo-TRP ion channel family: properties and therapeutic implications. Br J Pharmacol (im Druck)

  79. Botchkarev VA, Yaar M, Peters EM et al (2006) Neurotrophins in skin biology and pathology. J Invest Dermatol 126:1719–1727

    Article  PubMed  CAS  Google Scholar 

  80. Nockher WA, Renz H (2006) Neurotrophins in allergic diseases: from neuronal growth factors to intercellular signaling molecules. J Allergy Clin Immunol 117:583–589

    Article  PubMed  CAS  Google Scholar 

  81. Dallos A, Kiss M, Polyanka H et al (2006) Effects of the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide and galanin on the production of nerve growth factor and inflammatory cytokines in cultured human keratinocytes. Neuropeptides 40:251–263

    Article  PubMed  CAS  Google Scholar 

  82. Schuligoi R, Amann R (1998) Differential effects of treatment with nerve growth factor on thermal nociception and on calcitonin gene-related peptide content of primary afferent neurons in the rat. Neurosci Lett 252:147–149

    Article  PubMed  CAS  Google Scholar 

  83. Schulte-Herbruggen O, Folster-Holst R, Elstermann M von et al (2007) Clinical relevance of nerve growth factor serum levels in patients with atopic dermatitis and psoriasis. Int Arch Allergy Immunol 144:211–216

    Article  PubMed  CAS  Google Scholar 

  84. Paterson S, Schmelz M, McGlone F et al (2009) Facilitated neurotrophin release in sensitized human skin. Eur J Pain 13:399–405

    Article  PubMed  CAS  Google Scholar 

  85. Bowles WR, Sabino M, Harding-Rose C et al (2006) Chronic nerve growth factor administration increases the peripheral exocytotic activity of capsaicin-sensitive cutaneous neurons. Neurosci Lett 403:305–308

    Article  PubMed  CAS  Google Scholar 

  86. Ohta M, Hikima R, Ogawa T (2000) Physiological characteristics of sensitive skin classified by stinging test. J Cosmetic Sci Soc Jpn 23:163–167

    Google Scholar 

  87. Fruhstorfer H, Hermanns M, Latzke L (1986) The effects of thermal stimulation on clinical and experimental itch. Pain 24(2):259–269

    Article  PubMed  CAS  Google Scholar 

  88. Bromm B, Scharein E, Darsow U, Ring J (1999) Effects of menthol and cold on histamine-induced itch and skin reactions in man. Neurosci Lett 187(3):157–160

    Article  Google Scholar 

  89. Lewine GR, Mendell LM (1993) Nerve growth factor and nociception. Trends Neurosci 16(9):353–359

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ständer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benecke, H., Schneider, S., Lotts, T. et al. Neuropeptide und ihre Rezeptoren als molekulare Grundlage der empfindlichen Haut. Hautarzt 62, 893–899 (2011). https://doi.org/10.1007/s00105-011-2208-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-011-2208-8

Schlüsselwörter

Keywords

Navigation