Skip to main content
Log in

Immunologie der Kontaktallergie

Immunology of contact allergy

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Die Kontaktallergie ist eine Hauterkrankung, die durch die Reaktion des Immunsystems auf niedermolekulare Chemikalien verursacht wird. Kontaktallergene zeichnen sich durch chemische Reaktivität aus, die toxisch wirkenden Irritanzien fehlt. Kovalente Bindung von Kontaktallergenen an oder Komplexbildung mit Proteinen ist für die Aktivierung des Immunsystems unabdingbar. Als Konsequenz werden antigene Epitope gebildet, die von kontaktallergenspezifischen T-Zellen erkannt werden. Die Bildung von Effektor und Memory-T-Zellen bedingt die hohe Antigenspezifität und die wiederholte antigenspezifische Hautreaktion der Kontaktdermatitis. Neue Erkenntnisse zeigen, dass die weniger spezifische Reaktion des angeborenen Immunsystems auf Kontaktallergene der Reaktion auf eine Infektion sehr ähnlich ist. Somit handelt es sich bei der Kontaktallergie quasi um ein immunologisches Missverständnis, da der Hautkontakt mit Chemikalien als Infektion interpretiert wird. Das wachsende Verständnis der molekularen und zellulären Pathomechanismen der Kontaktallergie kann helfen, kausale Therapien und In-vitro-Alternativen zum Tierversuch für die Identifikation von Kontaktallergenen zu entwickeln.

Abstract

Contact allergy is a skin disease that is caused by the reaction of the immune system to low molecular weight chemicals. A hallmark of contact allergens is their chemical reactivity, which is not exhibited by toxic irritants. Covalent binding of contact allergens to or complex formation with proteins is essential for the activation of the immune system. As a consequence antigenic epitopes are formed, which are recognized by contact allergen-specific T cells. The generation of effector and memory T cells causes the high antigen specificity and the repeated antigen-specific skin reaction of contact allergy. New findings reveal that the less specific reaction of the innate immune system to contact allergens closely resembles the reaction to an infection. Therefore, contact allergy can be viewed as an immunologic misunderstanding since the skin contact with chemical allergens is interpreted as an infection. The growing understanding of the molecular and cellular pathologic mechanisms of contact allergy can aid the development of specific therapies and of in vitro alternatives to animal testing for the identification of contact allergens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Abbreviations

DAMPs:

Damage-assoziierte molekulare Muster

DZ:

Dendritische Zelle

HA:

Hyaluronsäure

LLNA:

Local Lymph Node Assay

LPS:

Lipopolysaccharid

NLR:

NOD-like-Rezeptor

PAMPs:

Pathogen-assoziierte molekulare Muster

ROS:

Reaktive Sauerstoffspezies

TNCB:

2,4,6-Trinitrochlorbenzol

TLR:

Toll-like-Rezeptor

Literatur

  1. Askenase PW, Majewska-Szczepanik M, Kerfoot S, Szczepanik M (2011) Participation of iNKT cells in the early and late components of Tc1-mediated DNFB contact sensitivity: cooperative role of gammadelta-T cells. Scand J Immunol 73:465–477

    Article  PubMed  CAS  Google Scholar 

  2. Basketter DA, Gerberick F, Kimber I (2007) The local lymph node assay and the assessment of relative potency: status of validation. Contact Dermatitis 57:70–75

    Article  PubMed  CAS  Google Scholar 

  3. Carbone T, Nasorri F, Pennino D et al (2010) CD56 highCD16 – NK cell involvement in cutaneous lichen planus. Eur J Dermatol 20:724–730

    PubMed  CAS  Google Scholar 

  4. Cavani A (2008) T regulatory cells in contact hypersensitivity. Curr Opin Allergy Clin Immunol 8:294–298

    Article  PubMed  CAS  Google Scholar 

  5. Cavani A, De Luca A (2010) Allergic contact dermatitis: novel mechanisms and therapeutic perspectives. Curr Drug Metab 11:228–233

    Article  PubMed  CAS  Google Scholar 

  6. Dudeck A, Suender CA, Kostka SL et al (2011) Mast cells promote Th1 and Th17 responses by modulating dendritic cell maturation and function. Eur J Immunol 41:1883–1893

    Article  PubMed  CAS  Google Scholar 

  7. Engeman T, Gorbachev AV, Kish DD, Fairchild RL (2004) The intensity of neutrophil infiltration controls the number of antigen-primed CD8 T cells recruited into cutaneous antigen challenge sites. J Leukoc Biol 76:941–949

    Article  PubMed  CAS  Google Scholar 

  8. Geier J, Uter W, Krautheim A et al (2011) Die häufigsten Kontaktallergene der Jahre 2007–2009. Allergo J 20:93–101

    Google Scholar 

  9. Girardi M, Lewis J, Glusac E et al (2002) Resident skin-specific gammadelta T cells provide local, nonredundant regulation of cutaneous inflammation. J Exp Med 195:855–867

    Article  PubMed  CAS  Google Scholar 

  10. Gober MD, Fishelevich R, Zhao Y et al (2008) Human natural killer T cells infiltrate into the skin at elicitation sites of allergic contact dermatitis. J Invest Dermatol 128:1460–1469

    Article  PubMed  CAS  Google Scholar 

  11. Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8:1095–1104

    Article  PubMed  CAS  Google Scholar 

  12. Guan H, Zu G, Slater M, Elmets C, Xu H (2002) GammadeltaT cells regulate the development of hapten-specific CD8+ effector T cells in contact hypersensitivity responses. J Invest Dermatol 119:137–142

    Article  PubMed  CAS  Google Scholar 

  13. He D, Wu L, Kim HK et al (2009) IL-17 and IFN-gamma mediate the elicitation of contact hypersensitivity responses by different mechanisms and both are required for optimal responses. J Immunol 183:1463–1470

    Article  PubMed  CAS  Google Scholar 

  14. Jakob T, Pfender N, König T et al (2009) Langerhanszellbiologie im Wandel. Allergologie 32:462–468

    Google Scholar 

  15. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  PubMed  CAS  Google Scholar 

  16. Kezic S (2011) Genetic susceptibility to occupational contact dermatitis. Int J Immunopathol Pharmacol 24:73S–78S

    PubMed  CAS  Google Scholar 

  17. Kimber I, Basketter DA, Gerberick GF et al (2011) Chemical allergy: translating biology into hazard characterization. Toxicol Sci 120(Suppl 1):S238–S268

    Article  PubMed  CAS  Google Scholar 

  18. Kish DD, Li X, Fairchild RL (2009) CD8 T cells producing IL-17 and IFN-gamma initiate the innate immune response required for responses to antigen skin challenge. J Immunol 182:5949–5959

    Article  PubMed  CAS  Google Scholar 

  19. Martin SF, Dudda JC, Bachtanian E et al (2008) Toll-like receptor and IL-12 signaling control susceptibility to contact hypersensitivity. J Exp Med 205:2151–2162

    Article  PubMed  CAS  Google Scholar 

  20. Martin SF, Esser PR, Schmucker S et al (2010) T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cell Mol Life Sci 67:4171–4184

    Article  PubMed  CAS  Google Scholar 

  21. Martin SF, Esser PR, Weber FC et al (2011) Mechanisms of chemical-induced innate immunity in allergic contact dermatitis. Allergy 66:1152–1163

    Article  PubMed  CAS  Google Scholar 

  22. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265

    Article  PubMed  CAS  Google Scholar 

  23. Paust S, Gill HS, Wang BZ et al. (2010) Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat Immunol 11:1127–1135

    Article  PubMed  CAS  Google Scholar 

  24. Pennino D, Eyerich K, Scarponi C et al (2010) IL-17 amplifies human contact hypersensitivity by licensing hapten nonspecific Th1 cells to kill autologous keratinocytes. J Immunol 184:4880–4888

    Article  PubMed  CAS  Google Scholar 

  25. Sato N, Kinbara M, Kuroishi T et al (2007) Lipopolysaccharide promotes and augments metal allergies in mice, dependent on innate immunity and histidine decarboxylase. Clin Exp Allergy 37:743–751

    Article  PubMed  CAS  Google Scholar 

  26. Schmidt M, Raghavan B, Muller V et al (2010) Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol 11:814–819

    Article  PubMed  CAS  Google Scholar 

  27. Schnuch A, Westphal G, Mossner R et al (2011) Genetic factors in contact allergy – review and future goals. Contact Dermatitis 64:2–23

    Article  PubMed  CAS  Google Scholar 

  28. Vocanson M, Hennino A, Rozieres A et al (2009) Effector and regulatory mechanisms in allergic contact dermatitis. Allergy 64:1699–1714

    Article  PubMed  CAS  Google Scholar 

  29. Weber FC, Esser PR, Muller T et al (2010) Lack of the purinergic receptor P2X(7) results in resistance to contact hypersensitivity. J Exp Med 207:2609–2619

    Article  PubMed  CAS  Google Scholar 

  30. Zhao Y, Balato A, Fishelevich R et al (2009) Th17/Tc17 infiltration and associated cytokine gene expression in elicitation phase of allergic contact dermatitis. Br J Dermatol 161:1301–1306

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.F. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, S. Immunologie der Kontaktallergie. Hautarzt 62, 739–743 (2011). https://doi.org/10.1007/s00105-011-2184-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-011-2184-z

Schlüsselwörter

Keywords

Navigation