Skip to main content
Log in

Antimikrobielle Peptide, Vitamin D3 und mehr

Wie Rosazea möglicherweise entsteht

Antimicrobial peptides, Vitamin D3 and more

How rosacea may develop

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Die Rosazea ist eine chronische, entzündliche Hauterkrankung mit einer unvollständig verstandenen Pathogenese. In betroffener Haut findet sich bei Rosazea eine verstärkte Expression von Cathelicidin, einem antimikrobiellen Peptid und Effektormolekül der angeborenen Immunabwehr. Gleichzeitig ist die kutane Proteaseaktivität erhöht, die zur Bildung von Cathelicidinfragmenten mit proentzündlicher Aktivität führt. UV-Licht und mikrobielle Faktoren verstärken diese proinflammatorische Signalkaskade über eine Erhöhung des Vitamin-D3-Metabolismus und die Aktivierung von Toll-like-Rezeptoren (TLR). Retinoide, Azelainsäure und Doxycyclin hemmen die kutane Proteaseaktivität und die TLR-Expression und entfalten hierüber möglicherweise ihre antientzündliche Wirkung in der Therapie der Rosazea. Diese aktuellen Erkenntnisse erweitern zum einen das Verständnis der Pathogenese der Rosazea und ihrer erfolgreichen Behandlung. Zum anderen bieten sie mögliche Ansatzpunkte für neue, innovative Therapien bei dieser häufigen, stigmatisierenden Dermatose.

Abstract

The pathogenesis of rosacea – a common, chronic inflammatory skin disease mainly affecting the central portions of the face – is only partly understood. In affected skin the expression of cathelicidin – an antimicrobial peptide and effector of innate immunity – is strongly increased. In addition, the activity of cutaneous proteases is greatly increased leading to the generation of cathelicidin peptide fragments with pro-inflammatory activity. UV irradiation and microbial factors contribute to this inflammatory cascade by increasing vitamin D3 metabolism and the activation of toll-like receptors (TLR). Retinoids, azelaic acid and doxycycline inhibit both skin proteases and TLR expression and could mediate their anti-inflammatory effects in rosacea through these mechanisms. These data increase our understanding of the pathogenesis and therapy of rosacea. Also, these insights might uncover novel targets for innovative therapies of this common, stigmatizing skin disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Bonnar E, Eustace P, Powell FC (1993) The Demodex mite population in rosacea. J Am Acad Dermatol 28:443–448

    Article  PubMed  CAS  Google Scholar 

  2. Da Silva CA, Hartl D, Liu W et al (2008) TLR-2 and IL-17A in chitin-induced macrophage activation and acute inflammation. J Immunol 181:4279–4286

    Google Scholar 

  3. Del Rosso JQ, Webster GF, Jackson M et al (2007) Two randomized phase III clinical trials evaluating anti-inflammatory dose doxycycline (40-mg doxycycline, USP capsules) administered once daily for treatment of rosacea. J Am Acad Dermatol 56:791–802

    Article  Google Scholar 

  4. Gollnick H, Blume-Peytavi U, Szabo EL et al (2010) Systemic isotretinoin in the treatment of rosacea – doxycycline- and placebo-controlled, randomized clinical study. J Dtsch Dermatol Ges 8:505–515

    PubMed  Google Scholar 

  5. Gudmundsson GH, Agerberth B, Odeberg J et al (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 238:325–332

    Article  PubMed  CAS  Google Scholar 

  6. Hata TR, Kotol P, Jackson M et al (2008) Administration of oral vitamin D induces cathelicidin production in atopic individuals. J Allergy Clin Immunol 122:829–831

    Article  PubMed  CAS  Google Scholar 

  7. Koczulla R, Von Degenfeld G, Kupatt C et al (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111:1665–1672

    PubMed  CAS  Google Scholar 

  8. Lande R, Gregorio J, Facchinetti V et al (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449:564–569

    Article  PubMed  CAS  Google Scholar 

  9. Liu PT, Krutzik SR, Kim J et al (2005) Cutting edge: all-trans retinoic acid down-regulates TLR2 expression and function. J Immunol 174:2467–2470

    PubMed  CAS  Google Scholar 

  10. Morizane S, Yamasaki K, Kabigting FD et al (2010) Kallikrein expression and cathelicidin processing are independently controlled in keratinocytes by calcium, vitamin D(3), and retinoic acid. J Invest Dermatol 130:1297–1306

    Article  PubMed  CAS  Google Scholar 

  11. Murakami M, Lopez-Garcia B, Braff M et al (2004) Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172:3070–3077

    PubMed  CAS  Google Scholar 

  12. Peric M, Koglin S, Dombrowski Y et al (2009) Vitamin D analogs differentially control antimicrobial peptide/“alarmin“ expression in psoriasis. PLoS One 4:e6340

    Article  PubMed  Google Scholar 

  13. Peric M, Koglin S, Kim SM et al (2008) IL-17A enhances vitamin D3-induced expression of cathelicidin antimicrobial peptide in human keratinocytes. J Immunol 181:8504–8512

    PubMed  CAS  Google Scholar 

  14. Peric M, Lehmann B, Vashina G et al (2010) UV-B-triggered induction of vitamin D3 metabolism differentially affects antimicrobial peptide expression in keratinocytes. J Allergy Clin Immunol 125:746–749

    Article  PubMed  CAS  Google Scholar 

  15. Sapadin AN, Fleischmajer R (2006) Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol 54:258–265

    Article  PubMed  Google Scholar 

  16. Schauber J, Dorschner RA, Coda AB et al (2007) Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest 117:803–811

    Article  PubMed  CAS  Google Scholar 

  17. Schauber J, Dorschner RA, Yamasaki K et al (2006) Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology 118:509–519

    PubMed  CAS  Google Scholar 

  18. Schauber J, Gallo RL (2009) Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol 124:R13–R18

    Article  PubMed  CAS  Google Scholar 

  19. Schauber J, Gallo RL (2007) Expanding the roles of antimicrobial peptides in skin: alarming and arming keratinocytes. J Invest Dermatol 127:510–512

    Article  PubMed  CAS  Google Scholar 

  20. Tenaud I, Khammari A, Dreno B (2007) In vitro modulation of TLR-2, CD1d and IL-10 by adapalene on normal human skin and acne inflammatory lesions. Exp Dermatol 16:500–506

    Article  PubMed  CAS  Google Scholar 

  21. Thiboutot DM, Fleischer AB, Del Rosso JQ et al (2009) A multicenter study of topical azelaic acid 15% gel in combination with oral doxycycline as initial therapy and azelaic acid 15% gel as maintenance monotherapy. J Drugs Dermatol 8:639–648

    PubMed  Google Scholar 

  22. Vahavihu K, Ala-Houhala M, Peric M et al (2010) Narrowband ultraviolet B treatment improves vitamin D balance and alters antimicrobial peptide expression in skin lesions of psoriasis and atopic dermatitis. Br J Dermatol 163:321–328

    Article  PubMed  CAS  Google Scholar 

  23. Wang TT, Nestel F, Bourdeau V et al (2004) Cutting edge: 1,25-Dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173:2909–2912

    PubMed  CAS  Google Scholar 

  24. Yamasaki K, Di Nardo A, Bardan A et al (2007) Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 13:975–980

    Article  PubMed  CAS  Google Scholar 

  25. Yamasaki K, Gallo RL (2010) Azelaic acid gel 15% alters kallikrein 5 and cathelicidin expression in epidermal keratinocytes, critical elements in the pathogenesis of rosacea. J Am Acad Dermatol 60:AB1

    Google Scholar 

  26. Yamasaki K, Gallo RL (2009) The molecular pathology of rosacea. J Dermatol Sci 55:77–81

    Article  PubMed  CAS  Google Scholar 

  27. Yamasaki K, Kanada K, Macleod DT et al (2011) TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Invest Dermatol 131:688–697

    Article  PubMed  CAS  Google Scholar 

  28. Yamasaki K, Schauber J, Coda A et al (2006) Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 20:2068–2080

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Der Autor hat Vortragshonorare von Galderma erhalten. Hieraus ergeben sich nach Meinung des Autors keine Interessenkonflikte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schauber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schauber, J. Antimikrobielle Peptide, Vitamin D3 und mehr. Hautarzt 62, 815–819 (2011). https://doi.org/10.1007/s00105-011-2142-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-011-2142-9

Schlüsselwörter

Keywords

Navigation