Skip to main content
Log in

Rolle der extrazellulären Matrix bei der extrinsischen Hautalterung

Role of the extracellular matrix in extrinsic skin aging

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Klinisch manifestiert sich aktinisch gealterte Haut durch das Auftreten von Falten, Gewebeschlaffheit und durch ein ledriges Erscheinungsbild. Kausal verknüpft mit diesen Symptomen der Photoalterung sind histologische und ultrastrukturelle Veränderungen der extrazellulären Matrix in der Dermis. Sie beinhalten einen erhöhten enzymatischen Ab- und Umbau von Kollagen, der zur Minderung der strukturellen Integrität der Dermis führt, wodurch die Haut faltiger wirkt. Darüber hinaus resultieren UV-induzierte Veränderungen der Hyaluronsäure- und Proteoglykanmatrix in einem reduzierten Feuchtigkeitsgehalt und einer Abnahme des Tugors. Neben den Organeigenschaften der Haut wird zudem durch den alterungsassoziierten Umbau der dermalen extrazellulären Matrix der Phänotyp der dermalen Zellen auf zellbiologischer Basis verändert, wie z. B. die Regenerationsfähigkeit der Fibroblasten. In den letzten Jahren wurden erhebliche Fortschritte im Verständnis darin erzielt, welche molekularen und zellulären Mechanismen die UV-induzierten Veränderungen der extrazellulären Matrix beeinflussen. Aktuelle Erkenntnisse in diesem Bereich vermitteln interessante Einblicke in die Regulation der aktinischen Alterung und bieten möglicherweise neue therapeutische Ansätze.

Abstract

Photoaged skin is clinically characterized by wrinkling, laxity and a leather-like appearance. These symptoms of actinic aging are causally connected to histological and ultrastructural changes of the connective tissue of the dermis. Changes include both enzymatic degradation and reduced de novo synthesis of collagen which cause premature wrinkling of the skin. Changes in the hyaluronan and proteoglycan matrix lead to reduced water content and thereby increased laxity of the skin. Furthermore, the UV-induced remodeling of the extracellular matrix strongly affects the cellular phenotypes such as the regenerative capacity of dermal fibroblasts. In recent years considerable progress has been made towards the understanding of molecular and cellular mechanisms underlying the UV-induced changes of the extracellular matrix. Current findings in this field reveal interesting insights in the dermal aging and provide new targets and strategies for the treatment of photoaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Averbeck M, Beilharz S, Bauer M et al (2006) In situ profiling and quantification of cytokines released during ultraviolet B-induced inflammation by combining dermal microdialysis and protein microarrays. Exp Dermatol 15:447–454

    Article  PubMed  CAS  Google Scholar 

  2. Calikoglu E, Sorg O, Tran C et al (2006) UVA and UVB decrease the expression of CD44 and hyaluronate in mouse epidermis, which is counteracted by topical retinoids. Photochem Photobiol 82:1342–1347

    Article  PubMed  CAS  Google Scholar 

  3. Carrino DA, Onnerfjord P, Sandy JD et al (2003) Age-related changes in the proteoglycans of human skin. Specific cleavage of decorin to yield a major catabolic fragment in adult skin. J Biol Chem 278:17566–17572

    Article  PubMed  CAS  Google Scholar 

  4. Dai G, Freudenberger T, Zipper P et al (2007) Chronic ultraviolet B irradiation causes loss of hyaluronic acid from mouse dermis because of down-regulation of hyaluronic acid synthases. Am J Pathol 171:1451–1461

    Article  PubMed  CAS  Google Scholar 

  5. Danielson KG, Baribault H, Holmes DF et al (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136:729–743

    Article  PubMed  CAS  Google Scholar 

  6. El-Domyati MM, Attia SK, Saleh FY et al (2004) Effect of topical tretinoin on photoaged facial skin: a histometric, immunohistochemical and ultrastructural study. J Cosmet Dermatol 3:191–201

    Article  PubMed  Google Scholar 

  7. Ellis CN, Weiss JS, Hamilton TA et al (1990) Sustained improvement with prolonged topical tretinoin (retinoic acid) for photoaged skin. J Am Acad Dermatol 23:629–637

    Article  PubMed  CAS  Google Scholar 

  8. Fisher GJ, Quan T, Purohit T et al (2009) Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin. Am J Pathol 174:101–114

    Article  PubMed  CAS  Google Scholar 

  9. Fisher GJ, Varani J, Voorhees JJ (2008) Looking older: fibroblast collapse and therapeutic implications. Arch Dermatol 144:666–672

    Article  PubMed  Google Scholar 

  10. Fleischmajer R, Perlish JS, Bashey RI (1972) Human dermal glycosaminoglycans and aging. Biochim Biophys Acta 279:265–275

    PubMed  CAS  Google Scholar 

  11. Fushimi H, Kameyama M, Shinkai H (1989) Deficiency of the core proteins of dermatan sulphate proteoglycans in a variant form of Ehlers-Danlos syndrome. J Intern Med 226:409–416

    PubMed  CAS  Google Scholar 

  12. Griffiths CE, Russman AN, Majmudar G et al (1993) Restoration of collagen formation in photodamaged human skin by tretinoin (retinoic acid). N Engl J Med 329:530–535

    Article  PubMed  CAS  Google Scholar 

  13. Iozzo RV, Hassell JR (1989) Identification of the precursor protein for the heparan sulfate proteoglycan of human colon carcinoma cells and its post-translational modifications. Arch Biochem Biophys 269:239–249

    Article  PubMed  CAS  Google Scholar 

  14. Kanda N, Watanabe S (2005) Regulatory roles of sex hormones in cutaneous biology and immunology. J Dermatol Sci 38:1–7

    Article  PubMed  CAS  Google Scholar 

  15. Knott A, Reuschlein K, Lucius R et al (2009) Deregulation of versican and elastin binding protein in solar elastosis. Biogerontology 10:181–190

    Article  PubMed  CAS  Google Scholar 

  16. Nomura Y (2006) Structural change in decorin with skin aging. Connect Tissue Res 47:249–255

    Article  PubMed  CAS  Google Scholar 

  17. Röck K, Fischer K, Fischer JW (2010) Hyaluronan used for intradermal injections is incorporated into the pericellular matrix and promotes proliferation in human skin fibroblasts in vitro. Dermatology 221:219–228

    Article  PubMed  Google Scholar 

  18. Röck K, Grandoch M, Majora M et al (2011) Collagen fragments inhibit hyaluronan synthesis in skin fibroblasts in response to UVB: new insights into mechanisms of matrix remodelling. J Biol Chem 286:18268–18276

    Article  PubMed  Google Scholar 

  19. Saavalainen K, Pasonen-Seppanen S, Dunlop TW et al (2005) The human hyaluronan synthase 2 gene is a primary retinoic acid and epidermal growth factor responding gene. J Biol Chem 280:14636–14644

    Article  PubMed  CAS  Google Scholar 

  20. Sator PG, Schmidt JB, Rabe T et al (2004) Skin aging and sex hormones in women – clinical perspectives for intervention by hormone replacement therapy. Exp Dermatol 13(Suppl 4):36–40

    Article  PubMed  CAS  Google Scholar 

  21. Schonherr E, Jarvelainen HT, Sandell LJ et al (1991) Effects of platelet-derived growth factor and transforming growth factor-beta 1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells. J Biol Chem 266:17640–17647

    PubMed  CAS  Google Scholar 

  22. Schwartz E (1988) Connective tissue alterations in the skin of ultraviolet irradiated hairless mice. J Invest Dermatol 91:158–161

    Article  PubMed  CAS  Google Scholar 

  23. Sellheyer K (2003) Pathogenesis of solar elastosis: synthesis or degradation? J Cutan Pathol 30:123–127

    Article  PubMed  Google Scholar 

  24. Sheng W, Wang G, Wang Y et al (2005) The roles of versican V1 and V2 isoforms in cell proliferation and apoptosis. Mol Biol Cell 16:1330–1340

    Article  PubMed  CAS  Google Scholar 

  25. Stern R (2007) Complicated hyaluronan patterns in skin: enlightenment by UVB? J Invest Dermatol 127:512–513

    Article  PubMed  CAS  Google Scholar 

  26. Stern R (2004) Hyaluronan catabolism: a new metabolic pathway. Eur J Cell Biol 83:317–325

    Article  PubMed  CAS  Google Scholar 

  27. Sudel KM, Venzke K, Knussmann-Hartig E et al (2003) Tight control of matrix metalloproteinase-1 activity in human skin. Photochem Photobiol 78:355–360

    Article  PubMed  Google Scholar 

  28. Takahashi Y, Ishikawa O, Okada K et al (1996) Disaccharide analysis of human skin glycosaminoglycans in sun-exposed and sun-protected skin of aged people. J Dermatol Sci 11:129–133

    Article  PubMed  CAS  Google Scholar 

  29. Tammi R, Pasonen-Seppanen S, Kolehmainen E et al (2005) Hyaluronan synthase induction and hyaluronan accumulation in mouse epidermis following skin injury. J Invest Dermatol 124:898–905

    Article  PubMed  CAS  Google Scholar 

  30. Varani J, Spearman D, Perone P et al (2001) Inhibition of type I procollagen synthesis by damaged collagen in photoaged skin and by collagenase-degraded collagen in vitro. Am J Pathol 158:931–942

    Article  PubMed  CAS  Google Scholar 

  31. Verzijl N, Degroot J, Oldehinkel E et al (2000) Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem J 350 Pt 2:381–387

    Google Scholar 

  32. Weigel PH, Hascall VC, Tammi M (1997) Hyaluronan synthases. J Biol Chem 272:13997–14000

    Article  PubMed  CAS  Google Scholar 

  33. Wu Y, Wu J, Lee DY et al (2005) Versican protects cells from oxidative stress-induced apoptosis. Matrix Biol 24:3–13

    Article  PubMed  CAS  Google Scholar 

  34. Yamauchi M, Prisayanh P, Haque Z et al (1991) Collagen cross-linking in sun-exposed and unexposed sites of aged human skin. J Invest Dermatol 97:938–941

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Erhalt von Forschungsgeldern zur Erforschung der Wirkung von Hyaluronsäure auf dermale Fibroblasten von den Firmen Merz und Evonik-Goldschmidt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.W. Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röck, K., Fischer, J. Rolle der extrazellulären Matrix bei der extrinsischen Hautalterung. Hautarzt 62, 591–597 (2011). https://doi.org/10.1007/s00105-011-2133-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-011-2133-x

Schlüsselwörter

Keywords

Navigation