Der Hautarzt

, Volume 61, Issue 11, pp 946–953 | Cite as

Rekombinante Allergene

Routinediagnostik oder Wissenschaft?
Leitthema

Zusammenfassung

Die Verwendung rekombinanter Allergenkomponenten eröffnet mehrere diagnostische Möglichkeiten. So können krankheitsspezifische Sensibilisierungsmuster wie etwa bei der allergisch bronchopulmonalen Aspergillose ABPA identifiziert werden. Durch Bestimmung der Majorallergene wichtiger Pollen (Bet v 1, Ole 1, Phl p 1/Phl p 5) kann eine präzisere Indikationsstellung im Hinblick auf eine allergenspezifische Immuntherapie ermöglicht werden, da Extrakte v. a. Majorallergene enthalten. Sensibilisierungen auf Nebenallergene wie Profiline und Polcalcine beeinflussen aufgrund der großen Kreuzreaktivität herkömmliche IgE-Tests, sind aber oft von untergeordneter klinischer Bedeutung. Bei Nahrungsmitteln können häufige Kreuzreaktionen etwa mit Birkenpollen über Bet v 1/PR-10-Proteine nachgewiesen werden. Zudem lassen Sensibilisierungen auf Speicherproteine etwa von Erdnuss (Ara h 2) oder Lipidtransferproteine von Pfirsich (Pru p 3) oder Haselnuss (Cor a 8) Rückschlüsse auf ein höheres Anaphylaxierisiko zu. Anstrengungsinduzierte Beschwerden (Tri a 19), unklare Latexsensibilisierungen oder Doppelpositivität bei Insektengiftallergien sind weitere aktuell sinnvolle Einsatzgebiete. Microarray-basierte Allergenchips erlauben bereits heute die Bestimmung von IgE gegen über 100 Allergenen aus kleinsten Serummengen, bedürfen aber noch der Evaluation und Optimierung bezüglich Allergenauswahl und Sensitivität.

Schlüsselwörter

Allergene Komponentenbasierte Diagnostik (CRD) Molekulare Diagnose Microarray Rekombinante Proteine 

Recombinant allergens

For routine use or still only science?

Abstract

Component-resolved diagnosis of allergies allows disease-specific patterns of sensitization in some conditions such as allergic bronchopulmonary aspergillosis ABPA). By determination of IgE against important pollen allergens such as Bet v 1, Ole e 1 or Phl p1/Phl p 5, more precise guidance for allergen-specific immunotherapy may be achieved, as pollen extracts contain mostly these major allergens. Sensitizations against minor allergens such as profilins or polcalcins influence the outcome of IgE measurements against full allergen sources, but are often of limited clinical relevance. In food allergy, frequent cross reactivity between pollens such as birch pollen via Bet v 1/PR10 proteins can be identified. Sensitization against some storage proteins such as peanut (Ara h 2) or lipid transfer proteins of peach (Pru p 3) or hazelnut (Cor a 8) may indicate an increased risk of severe anaphylactic reactions. Exercise-induced anaphylaxis, unclear sensitizations against latex or double-positivity in insect allergy are other useful indications for component-resolved diagnosis. Microarray-based allergen chip diagnosis makes possible today the detection of IgE against more than 100 allergens in tiny amounts of serum and is very promising, but still needs evaluation and optimization in regard to allergen selection and sensitivity.

Keywords

Allergens Component-resolved diagnosis (CRD) Microarray Molecular diagnosis Recombinant proteins 

Literatur

  1. 1.
    Barber D, Torre F de la, Feo F et al (2008) Understanding patient sensitization profiles in complex pollen areas: a molecular epidemiological study. Allergy 63(11):1550–1558CrossRefPubMedGoogle Scholar
  2. 2.
    Benhamou AH, Caubet JC, Eigenmann PA et al (2010) State of the art and new horizons in the diagnosis and management of egg allergy. Allergy 65(3):283–289CrossRefPubMedGoogle Scholar
  3. 3.
    Brans R, Ott H, Merk HF (2009) Weizenabhängige anstrengungsinduzierte Anaphylaxie. Hautarzt 60(12):956–960CrossRefPubMedGoogle Scholar
  4. 4.
    Crameri R, Hemmann S, Ismail C et al (1998) Disease-specific recombinant allergens for the diagnosis of allergic bronchopulmonary aspergillosis. Int Immunol 10(8):1211–1216CrossRefPubMedGoogle Scholar
  5. 5.
    Ebo DG, Hagendorens MM, De Knop KJ et al (2010) Component-resolved diagnosis from latex allergy by microarray. Clin Exp Allergy 40(2):348–358CrossRefPubMedGoogle Scholar
  6. 6.
    Focke M, Marth K, Flicker S, Valenta R (2008) Heterogeneity of commercial timothy grass pollen extracts. Clin Exp Allergy 38(8):1400–1408CrossRefPubMedGoogle Scholar
  7. 7.
    Focke M, Marth K, Valenta R (2009) Molecular composition and biological activity of commercial birch pollen allergen extracts. Eur J Clin Invest 39(5):429–436CrossRefPubMedGoogle Scholar
  8. 8.
    Heiss S, Mahler V, Steiner R et al (1999) Component-resolved diagnosis (CRD) of type I allergy with recombinant grass and tree pollen allergens by skin testing. J Invest Dermatol 113(5):830–837CrossRefPubMedGoogle Scholar
  9. 9.
    Hiller R, Laffer S, Harwanegg C et al (2002) Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment. FASEB J 16(3):414–416PubMedGoogle Scholar
  10. 10.
    Kraft D, Ferreira F, Ebner C et al (1998) Recombinant allergens: the future of the diagnosis and treatment of atopic allergy. Allergy 53:62–66CrossRefPubMedGoogle Scholar
  11. 11.
    Léonard R, Wopfner N, Pabst M et al (2010) A new allergen from ragweed (Ambrosia artemisiifolia) with homology to art v 1 from mugwort. J Biol Chem 285:27192–27200CrossRefPubMedGoogle Scholar
  12. 12.
    Matsuo H, Dahlström J, Tanaka A et al (2008) Sensitivity and specificity of recombinant omega-5 gliadin-specific IgE measurement for the diagnosis of wheat-dependent exercise-induced anaphylaxis. Allergy 63(2):233–236CrossRefPubMedGoogle Scholar
  13. 13.
    Menz G, Willer G, Crameri R (2000) Allergische bronchopulmonale Aspergillose (ABPA). Pneumologie 54(9):375–384CrossRefPubMedGoogle Scholar
  14. 14.
    Müller UR, Johansen N, Petersen AB et al (2009) Hymenoptera venom allergy: analysis of double positivity to honey bee and vespula venom by estimation of IgE antibodies to species-specific major allergens Api m1 and Ves v5. Allergy 64(4):543–548CrossRefPubMedGoogle Scholar
  15. 15.
    Ott H, Baron JM, Heise R et al (2008) Clinical usefulness of microarray-based IgE detection in children with suspected food allergy. Allergy 63(11):1521–1528CrossRefPubMedGoogle Scholar
  16. 16.
    Ott H, Fölster-Holst R, Merk HF, Baron JM (2009) Allergen microarrays: a novel tool for high-resolution IgE profiling in adults with atopic dermatitis. Eur J Dermatol 20(1):54–61PubMedGoogle Scholar
  17. 17.
    Ott H, Schröder C, Raulf-Heimsoth M et al (2010) Microarrays of recombinant Hevea brasiliensis proteins: a novel tool for the component-resolved diagnosis of natural rubber latex allergy. J Investig Allergol Clin Immunol 20(2):129–138PubMedGoogle Scholar
  18. 18.
    Reese I, Zuberbier T, Bunselmeyer B et al (2009) Diagnostic approach for suspected pseudoallergic reaction to food ingredients. J Dtsch Dermatol Ges 7(1):70–77PubMedGoogle Scholar
  19. 19.
    Schmid-Grendelmeier P, Crameri R (2001) Recombinant allergens for skin testing. Int Arch Allergy Immunol 125(2):96–111CrossRefPubMedGoogle Scholar
  20. 20.
    Schmid-Grendelmeier P, Holzmann D, Himly M et al (2003) Native Art v 1 and recombinant Art v 1 are able to induce humoral and T cell-mediated in vitro and in vivo responses in mugwort allergy. J Allergy Clin Immunol 111(6):1328–1336CrossRefPubMedGoogle Scholar
  21. 21.
    Valenta R, Laffer S, Vrtala S et al (1996) Recombinant allergens. Steps on the way to diagnosis and therapy of type I allergy. Adv Exp Med Biol 409:185–196PubMedGoogle Scholar
  22. 22.
    Wopfner N, Gadermaier G, Egger M et al (2005) The spectrum of allergens in ragweed and mugwort pollen. Int Arch Allergy Immunol 138:337–346CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Dermatologische KlinikUniversitätsspitalZürichSchweiz

Personalised recommendations