Skip to main content
Log in

Multiphotonenmikroskopie und In-vivo-Multiphotonentomographie in der dermatologischen Bildgebung

Multiphoton microscopy and in vivo tomography in dermatologic imaging

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Multiphotonenmikroskopie (MPM) als In-vitro-Verfahren und In-vivo-Multiphotonentomographie (MPT) sind nichtinvasive Untersuchungstechniken, mit denen sowohl zelluläre als auch extrazelluläre Strukturen mit subzellulärer Auflösung beurteilt werden können. Die Verfahren sind damit sowohl in der klinischen Diagnostik als auch für wissenschaftliche Fragestellungen in der angewandten und Grundlagenforschung geeignet. MPM und MPT beruhen auf der Anregung biogener Fluorophore durch zwei oder mehr langwellige Photonen geringer Energie und der Induktion von „second harmonic generation“ (SHG). Damit lassen sich Zellverbände und Gewebe ähnlich einer histologischen Schnittgebung beurteilen und gleichzeitig Aussagen zum dermalen Fasernetzwerk treffen. Die MPT wurde zusätzlich für die nichtinvasive In-vivo-Diagnostik von Hauterkrankungen entwickelt. Dieser Review stellt die Möglichkeiten einer multiphotonenbasierten Diagnostik bei der Beurteilung transkutaner Stoffwechselvorgänge dar. Weitere Schwerpunkte sind der Einsatz zur Beurteilung physiologischer und pathologischer Veränderungen des dermalen Fasernetzwerkes sowie der Einsatz des Verfahrens zur Diagnostik von Dermatosen mit dermaler und epidermaler Beteiligung im Rahmen einer optischen Biopsie. Neben der morphologischen Einordnung von benignen und malignen Hauttumoren sowie allergischen und entzündlichen Hauterkrankungen können mit den Verfahren auch metabolische Prozesse erfasst werden.

Abstract

Multiphoton microscopy (MPM) and in vivo multiphoton tomography (MPT) are non-invasive examination techniques that allow for the evaluation of cellular as well as extra-cellular structures by working at a subcellular resolution level. These techniques are thus appropriate not only for clinical diagnostics but also for scientific issues in basic and applied research. MPM and MPT are based on the stimulation of biogenic fluorophores by two or more long-wave, low-energy photons and the evocation of second harmonic generation (SHG). Thus, the evaluation quality of cell clusters and tissues is similar to histological sections. At the same time the dermal fiber network can be assessed. MPT was developed further for the application in non-invasive in vivo diagnostics of skin diseases. This review presents the capabilities of multiphoton-based diagnostics in the evaluation of transcutaneous metabolism. In addition, the multiphoton techniques employed for the evaluation of physiologic and pathologic changes of the dermal fiber network as well as in the diagnosis of dermal and epidermal disorders by visual biopsy. Besides the morphological classification of benign and malignant skin tumors or allergic or inflammatory skin lesions, the techniques also allow for recording metabolic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12

Literatur

  1. Alvarez-Roman R, Naik A, Kalia YN et al (2004) Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res 21:1818–1825

    Article  CAS  PubMed  Google Scholar 

  2. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  PubMed  Google Scholar 

  3. Dimitrow E, Riemann I, Ehlers A et al (2009) Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis. Exp Dermatol 18:509–515

    Article  PubMed  Google Scholar 

  4. Dimitrow E, Ziemer M, Koehler MJ et al (2009) Sensitivity and specificity of multiphotonlasertomography for in vivo and ex vivo diagnosis of malignant melanoma. J Invest Dermatol 129:1752–1758

    Article  CAS  PubMed  Google Scholar 

  5. Fischer F, Volkmer B, Puschmann S et al (2008) Assessing the risk of skin damage due to femtosecond laser irradiation. J Biophotonics 1:470–477

    Article  PubMed  Google Scholar 

  6. Goeppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys 9:273–294

    Article  Google Scholar 

  7. Kaiser W, Garrett CGB (1961) Two-photon excitation in CaF2:Eu2+. Phys Rev Lett 229–231

  8. Hendriks RFM, Lucassen GW (1999) Two photon fluorescence microscopy of in vivo human skin. SPIE 4164:116–121

    Article  Google Scholar 

  9. Koehler MJ, Hahn S, Preller A et al (2008) Morphological skin ageing criteria by multiphoton laser scanning tomography: non-invasive in vivo scoring of the dermal fibre network. Exp Dermatol 17:519–523

    Article  PubMed  Google Scholar 

  10. Koehler MJ, Konig K, Elsner P et al (2006) In vivo assessment of human skin aging by multiphoton laser scanning tomography. Opt Lett 31:2879–2881

    Article  PubMed  Google Scholar 

  11. Koehler MJ, Preller A, Kindler N et al (2009) Intrinsic, solar and sunbed-induced skin aging measured in vivo by multiphoton laser tomography and biophysical methods. Skin Res Technol 15:357–363

    Article  PubMed  Google Scholar 

  12. König K, Speicher M, Bückle R et al (2009) Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases. J Biophotonics 2:389–397

    Article  PubMed  Google Scholar 

  13. König K (2000) Laser tweezers and multiphoton microscopes in life sciences. Histochem Cell Biol 114:79–92

    PubMed  Google Scholar 

  14. König K, Ehlers A, Stracke F, Riemann I (2006) In vivo drug screening in human skin using femtosecond laser multiphoton tomography. Skin Pharmacol Physiol 19:78–88

    Article  PubMed  Google Scholar 

  15. König K, Riemann I (2003) High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Opt 8:450–459

    Article  Google Scholar 

  16. König K (2008) Clinical multiphoton tomography. J Biophotonics 1:13–23

    Article  PubMed  Google Scholar 

  17. Lee JN, Jee SH, Chan CC et al (2008) The effects of depilatory agents as penetration enhancers on human stratum corneum structures. J Invest Dermatol 128:2240–2247

    Article  CAS  PubMed  Google Scholar 

  18. Lin S-J, Jee SH, Dong C-Y (2007) Multiphoton microscopy: a new paradigm in dermatological imaging. Eur J Dermatol 17:361–366

    PubMed  Google Scholar 

  19. Lin SJ, Lo W, Tan HY et al (2006) Prediction of heatinduced collagen shrinkage by use of second harmonic generation microscopy. J Biomed Opt 11:34020

    Article  PubMed  Google Scholar 

  20. Lin SJ, Wu RJ, Tan HY et al (2005) Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy. Opt Lett 30:2275–2277

    Article  PubMed  Google Scholar 

  21. Luengo J, Weiss B, Schneider M et al (2006) Influence of the encapsulation of flufenamic acid into PLGA nanoparticles on human skin absorption. Skin Pharmacol Physiol 19:190–197

    Article  CAS  PubMed  Google Scholar 

  22. Masters BR, So PTC, Gratton E (1997) Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys J 72:2405–2412

    Article  CAS  PubMed  Google Scholar 

  23. Masters BR, So PTC, Gratton E (1998) Multiphoton excitation microscopy of in vivo human skin. Ann N Y Acad Sci 838:58–67

    Article  CAS  PubMed  Google Scholar 

  24. Paoli J, Smedh M, Wennberg AM, Ericson MB (2008) Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics. J Invest Dermatol 128:1248–1255

    Article  CAS  PubMed  Google Scholar 

  25. Teuchner K, Freyer W, Leupold D et al (1999) Femtosecond two-photon excited fluorescence of melanin. Photochem Photobiol 70:146–151

    CAS  PubMed  Google Scholar 

  26. Tsai T-H, Jee S-H, Chan J-Y et al (2009) Visualizing laser-skin interaction in vivo by multiphoton microscopy. J Biomed Opt 14:024034

    Article  PubMed  Google Scholar 

  27. Tsai TH, Jee SH, Dong CY, Lin SJ (2009) Multiphoton microscopy in dermatological imaging. J Dermatol Sci 56:1–8

    Article  PubMed  Google Scholar 

  28. Yu B, Dong CY, So PT et al (2001) In vitro visualization and quantification of oleic acid induced changes in transdermal transport using two-photon fluorescence microscopy. J Invest Dermatol 117:16–25

    Article  CAS  PubMed  Google Scholar 

  29. Yu B, Kim KH, So PTC et al (2003) Visualization of oleic acidinduced transdermal diffusion pathways using two-photon fluorescence microscopy. J Invest Dermatol 120:448–455

    Article  CAS  PubMed  Google Scholar 

  30. Zipfel WR,Williams RM, Christie R et al (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci U S A 100:7075–7080

    Article  CAS  PubMed  Google Scholar 

  31. Zoumi A, Lu X, Kassab GS, Tromberg BJ (2004) Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. Biophys J 87:2778–2786

    Article  CAS  PubMed  Google Scholar 

  32. Zoumi A,Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci U S A 99:11014–11019

    Article  CAS  PubMed  Google Scholar 

  33. Diaspro A, Bianchini P, Vicidomini G et al. (2006) Multi-photon excitations microscopy. Biomed Eng Online 5:36

    Article  PubMed  Google Scholar 

Download references

Danksagungen

Wir danken Enrico Dimitrow, Karsten Kirsch, Martin Johannes Köhler, Christina Raschke, Nancy Schmidt, Jörg Tittelbach, Sindy Zimmermann (Klinikum für Dermatologie am Universitätsklinikum Jena) und Rainer Bückle (JenLab GmbH) für ihre Unterstützung.

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Prof. K. König ist Geschäftsführer der GenLab GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kaatz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaatz, M., König, K. Multiphotonenmikroskopie und In-vivo-Multiphotonentomographie in der dermatologischen Bildgebung. Hautarzt 61, 397–409 (2010). https://doi.org/10.1007/s00105-009-1880-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-009-1880-4

Schlüsselwörter

Keywords

Navigation