Advertisement

Der Hautarzt

, Volume 60, Issue 10, pp 809–814 | Cite as

Prä- und probiotische Kosmetik

  • R. Simmering
  • R. BrevesEmail author
Leitthema

Zusammenfassung

Die menschliche Haut ist von einer Vielzahl von Mikroorganismen besiedelt, der sog. Hautmikroflora. Diese bildet ein komplexes Netzwerk von Interaktionen der Keime untereinander und mit den Zellen der Haut. Moderne molekularbiologische Analysemethoden haben neue Einblicke in die komplexe Vielfalt der nur teilweise kultivierbaren mikrobiellen Organismen eröffnet. Die Mehrzahl der residenten Keime auf gesunder Haut mit einer ausbalancierten Mikroflora ist unschädlich, in der Regel vermitteln sie sogar eine Schutzfunktion. Insbesondere im Fall milder Formen mikrobieller Ungleichgewichte wie unreiner Haut/milder Akne oder trockener Haut/milder atopischer Dermatitis stellen prä- und probiotische Konzepte eine wirksame Alternative zu strikt antibakteriellen Produkten dar. Präbiotische Wirkstoffe bringen die Hautmikroflora wieder in ihr natürliches Gleichgewicht. Probiotische Applikationen bestehen bevorzugt aus inaktivierten Präparationen schutzvermittelnder Bakterien. Eine Reihe erfolgreicher In-vivo-Studien illustriert dieses aus dem Lebensmittelsektor abgeleitete, neuartige Prinzip einer schonenden Kosmetik, für das bereits erste kommerzielle Produkte im Markt erhältlich sind.

Schlüsselwörter

Präbiotische Kosmetik Probiotische Kosmetik Mikrobielles Ungleichgewicht Milde Akne Milde atopische Dermatitis 

Pre- and Probiotic Cosmetics

Abstract

The human skin provides a habitat for a variety of microorganisms, the skin microflora. There is a complex network of interactions between the microbes and cells of the epidermis. Modern analytical methods in molecular biology have revealed new insights into this complex diversity of partially unculturable microbial organisms. Most of the resident microbes on healthy skin can be regarded as being harmless or even beneficial to skin. In the case of diseases with some imbalance in microorganisms, such as impure skin/mild acne or dry skin/mild atopic dermatitis, pre- and probiotic concepts represent an effective alternative to strictly antibacterial products. Prebiotic actives rebalance the skin microflora while probiotic approaches predominantly consist of applying an inactivated microbial biomass of beneficial bacteria. Several examples of successful in vivo studies illustrate this new principle for gentle cosmetics derived from the food sector.

Keywords

Prebiotic cosmetics Probiotic cosmetics Microbial imbalance Mild acne Mild atopic dermatitis 

Notes

Interessenonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Akiyama H, Yamasaki O, Tada J, Arata J (2000) Adherence characteristics and susceptibility to antimicrobial agents of Staphylococcus aureus strains isolated from skin infections and atopic dermatitis. J Dermatol Sci 23:155–160PubMedCrossRefGoogle Scholar
  2. 2.
    Bockmuehl D, Jassoy C, Nieveler S et al (2006) Prebiotic cosmetics: an alternative to antibacterial products. IFSCC magazine 9:1–5Google Scholar
  3. 3.
    Bojar RA, Holland KT (2002) Review: The human cutaneous microflora and factors controlling colonisation. World J Microbiol Biotechnol 18:889–903CrossRefGoogle Scholar
  4. 4.
    Braff MH, Bardan A, Nizet V, Gallo RL (2005) Cutaneous defense mechanisms by antimicrobial peptides. J Invest Dermatol 125:9–13PubMedCrossRefGoogle Scholar
  5. 5.
    Carolan H, Watkins S, Bradshaw D (2008) The prebiotic concept-a novel aproach for skin health. Euro Cosmetics 7/8:22–27Google Scholar
  6. 6.
    Cogen AL, Nizet V, Gallo RL (2008) Skin microbiota: a source of disease or defence? Br J Dermatol 158:442–455PubMedCrossRefGoogle Scholar
  7. 7.
    Donnarumma G, Paoletti I, Buommino E et al (2004) Malassezia furfur induces the expression of β-defensin-2 in human keratinocytes in a protein kinase C-dependent manner. Arch Dermatol Res 295:474–481PubMedCrossRefGoogle Scholar
  8. 8.
    Donnarumma G, Buommino E, Baroni A et al (2007) Effects of AV119, a natural sugar from avocado, on Malassezia furfur invasiveness and on the expression of HBD-2 and cytokines in human keratinocytes. Exp Dermatol 16:912–919PubMedCrossRefGoogle Scholar
  9. 9.
    Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci USA 105:17994–17999PubMedCrossRefGoogle Scholar
  10. 10.
    Frohm M, Agerberth B, Ahangari G et al (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272:15258–15263PubMedCrossRefGoogle Scholar
  11. 11.
    Gao Z, Tseng C, Pei Z, Blaser MJ (2007) Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci USA 104:2927–2932PubMedCrossRefGoogle Scholar
  12. 12.
    García JR, Krause A, Schulz S et al (2001) Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J 15:1819–1821Google Scholar
  13. 13.
    Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412PubMedGoogle Scholar
  14. 14.
    Grice EA, Kong HH, Renaud G et al (2008) A diversity profile of the human skin microbiota. Genome Res 18:1043–1050PubMedCrossRefGoogle Scholar
  15. 15.
    Grice EA, Kong HH, Conlan S et al (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192PubMedGoogle Scholar
  16. 16.
    Gueniche A, Knaudt B, Schuck E et al (2008) Effects of nonpathogenic gram-negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: a prospective, randomized, double-blind, placebo-controlled clinical study. Br J Dermatol 159:1357–1363PubMedCrossRefGoogle Scholar
  17. 17.
    Guéniche A, Cathelineau A, Bastien P et al (2008) Vitreoscilla filiformis biomass improves seborrheic dermatitis. J Eur Acad Dermatol Venereol 22:1014–1015CrossRefGoogle Scholar
  18. 18.
    Harder J, Schröder J (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277:46779–46784PubMedCrossRefGoogle Scholar
  19. 19.
    Harder J, Bartels J, Christophers E, Schröder J (2001) Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713PubMedCrossRefGoogle Scholar
  20. 20.
    Hartley G, McKenzie C, Greenman J et al (1999) Tongue microbiota and malodour: effects of metronidazole mouthrinse on tongue microbiota and breath odour. Microb Ecol Health Dis 11:226–233CrossRefGoogle Scholar
  21. 21.
    Heldermann M, Van der Hoeven H (2007) Probiotic active for the skin – helps your skin stay in balance. Household Personal Care Today 1:8–9Google Scholar
  22. 22.
    Holland KT, Bojar RA (2002) Cosmetics: What is their influence on the skin microflora? 3:445–449Google Scholar
  23. 23.
    Iovieno A, Lambiase A, Sacchetti M et al (2008) Preliminary evidence of the efficacy of probiotic eye-drop treatment in patients with vernal keratoconjunctivitis. Graefes Arch Clin Exp Ophthalmol 246:435–441PubMedCrossRefGoogle Scholar
  24. 24.
    Janssen F, Waldmann-Laue M (2009) Efficacy of a prebiotic product combination against skin impurities. IFSCC CongressGoogle Scholar
  25. 25.
    Katsuyama M, Wachi Y, Ikezawa Z et al (1997) Correlation between the population of Staphylococcus aureus on the skin and severity of a score of dry type atopic dermatitis conditions. Nippon Hifuka Gakkai Zasshi 107:1103–1111Google Scholar
  26. 26.
    Kozuka T (2002) Patch testing to exclude allergic contact dermatitis caused by povidone-iodine. Dermatology 204:96–98PubMedCrossRefGoogle Scholar
  27. 27.
    Krutmann J (2009) Pre- and probiotics for human skin. J Dermatol Sci 54:1–5PubMedCrossRefGoogle Scholar
  28. 28.
    Lang C, Veen M, Budde E et al (2007) Microorganisms inhibiting the formation of axillary malodor. U.S. patent WO 2007/031300Google Scholar
  29. 29.
    Lang C, Heilmann A, Veen M et al (2006) Methods and means for protecting the skin against pathogenic bacteria. U.S. patent WO 2006/136420 A2Google Scholar
  30. 30.
    Larson EL, Gomez-Duarte C, Lee LV et al (2003) Microbial flora of hands of homemakers. Am J Infect Control 31:72–79PubMedCrossRefGoogle Scholar
  31. 31.
    Leyden JJ, McGinley KJ, Holzle E (1981) The microbiology of the human axilla and its relationship to axillary odor. J Invest Dermatol 77:413–416PubMedCrossRefGoogle Scholar
  32. 32.
    Masako K, Hideyuki I, Shigeyuki O, Zenro I (2005) A novel method to control the balance of skin microflora: Part 1. Attack on biofilm of Staphylococcus aureus without antibiotics. J Dermatol Sci 38:197–205PubMedCrossRefGoogle Scholar
  33. 33.
    Masako K, Yusuke K, Hideyuki I et al (2005) A novel method to control the balance of skin microflora: Part 2. A study to assess the effect of a cream containing farnesol and xylitol on atopic dry skin. J Dermatol Sci 38:207–213PubMedCrossRefGoogle Scholar
  34. 34.
    Midorikawa K, Ouhara K, Komatsuzawa H et al (2003) Staphylococcus aureus susceptibility to innate antimicrobial peptides, β-defensins and CAP18, expressed by human keratinocytes. Infect Immun 71:3730–3739PubMedCrossRefGoogle Scholar
  35. 35.
    Ogawa T, Katsuoka K, Kawano K, Nishiyama S (1994) Comparative study of staphylococcal flora on the skin surface of atopic dermatitis patients and healthy subjects. J Dermatol 21:453–460PubMedGoogle Scholar
  36. 36.
    Ouwehand AC, Batsman A, Salminen S (2003) Probiotics for the skin: A new area of potential application? Lett Appl Microbiol 36:327–331PubMedCrossRefGoogle Scholar
  37. 37.
    Pancholi P, Healy M, Bittner T et al (2005) Molecular characterization of hand flora and environmental isolates in a community setting. J Clin Microbiol 43:5202–5207PubMedCrossRefGoogle Scholar
  38. 38.
    Pernet I, Reymermier C, Guezennec A et al (2005) An optimized method for intensive screening of molecules that stimulate β-defensin 2 or 3 (hBD2 or hBD3) expression in cultured normal human keratinocytes 27:161–170Google Scholar
  39. 39.
    Philpott MP (2003) Defensins and acne. Mol Immunol 40:457–462PubMedCrossRefGoogle Scholar
  40. 40.
    Rogers KL, Rupp ME, Fey PD (2008) The presence of icaABCDis detrimental to the colonization of human skin by Staphylococcus epidermidis. Appl Environ Microbiol 74:6155–6157PubMedCrossRefGoogle Scholar
  41. 41.
    Schröder J-, Harder J (1999) Human beta-defensin-2. Int J Biochem Cell Biol 31:645–651CrossRefGoogle Scholar
  42. 42.
    Trebesius K, Banowski B, Beimfohr C et al (2006) Gender-specific composition of the human axillary microbiota. Biospektrum Sonderausgabe VAAM-Jahrestagung, S 75Google Scholar
  43. 43.
    Williams REA, Gibson AG, Aitchison TC et al (1990) Assessment of a contact-plate sampling technique and subsequent quantitative bacterial studies in atopic dermatitis. Br J Dermatol 123:493–501PubMedCrossRefGoogle Scholar
  44. 44.
    Ziebuhr W, Hennig S, Eckart M et al (2006) Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int J Antimicrob Agents 28:14–20CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Henkel AG & Co KGaADüsseldorfDeutschland

Personalised recommendations