Skip to main content

Advertisement

Log in

Stellenwert der Zellkulturmodelle in kutaner Tumorbiologie

Teil I: Zelllinien tumorigen transformierter Zellen

Relevance of cell culture models in cutaneous tumour biology

Part I: Tumour cell lines

  • Übersichten
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Plattenepithelkarzinome und Basalkarzinome der Haut sowie das maligne Melanom entstehen als Ergebnis eines vielstufigen Prozesses, bei dem sich genetische und epigenetische Veränderungen in den betroffenen Zellen anhäufen. Ein Einblick in die Biologie menschlicher Tumoren ist eine wesentliche Bedingung für die Entwicklung effektiver Therapieverfahren. Zellkulturmodelle stellen ein fruchtbares experimentelles System dar. Das Ausmaß der tumorigenen Transformation kann präzise definiert werden. Tumorzelllinien zeigen ähnliche funktionelle Hierarchien wie Tumoren bzw. Gewebe in vivo und können zu einer wichtigen Quelle für die Aufreinigung und Charakterisierung minoritärer Zellpopulationen, wie z. B. Tumorstammzellen, werden. In Serien von klonal verwandten Zelllinien können die einzelnen Komponenten des tumorigenen Phänotyps weitgehend separiert werden. Dies ergibt Einblicke in die schrittweise Entwicklung der klinisch relevanten Parameter wie Tumorigenität oder metastatische Kompetenz. Zudem kann diese phänotypische Entwicklung mit den Veränderungen in der Struktur und Expression des Genoms der Zellen korreliert werden. Während für die meisten Studien humane tumorigen transformierte Zelllinien bevorzugt werden, sind für spezielle Fragestellungen Tumorzelllinien tierischer Abstammung unentbehrlich. Bei der Auswertung der Zellkulturexperimente muss man sich der Möglichkeit eines Artefakts bewusst sein und alle Ergebnisse mit komplexen Zellkultur- oder tierischen Modellen und klinischen Proben konfrontieren.

Abstract

Cutaneous squamous cell carcinoma, basal cell carcinoma and melanoma, much like all other human solid tumors, result from a multi-step process in which genetic and epigenetic changes accumulate in the affected cells. Insight into the biology of human tumors is a requirement for developing effective therapies. Cell culture models are a very valuable experimental system. The degree of tumorigenic transformation can be precisely defined. Tumor cell lines display similar functional hierarchy as tumors or tissues in vivo and can, consequently, provide a crucial source of minor cell subsets, like tumor stem cells. Progression series of clonally related cell lines offer the opportunity to follow the process of sequential acquisition of transformation-related traits up to the development of properties with direct clinical equivalents, like tumorigenicity and metastatic competence. These phenotypical changes can be directly correlated with changes at the genome level, concerning both gene structure and expression. While for most studies, human transformed cell lines are the model of choice, there are questions for which animal cell lines are strongly preferred, such as interactions between the tumor and the immune system. To properly interpret the results of all experiments with classical two-dimensional cell culture, a possible danger of artifacts due to grossly unnatural environment must be constantly taken into account. It is thus obligatory to confirm any such result with other experimental models like complex three-dimensional culture models or experimental animals, and with clinical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Abbreviations

ABC:

ATP-binding casette

BCRP:

breast cancer resistance protein

GFP:

green fluorescent protein

MAPK:

mitogen-activated protein kinase

MHC:

major histocompatibility complex

MM:

metastatic melanoma

PDGF:

platelet-derived growth factor

RGP:

radial growth phase

SCID:

severe combined immunodeficiency

SCID/NOD:

severe combined immunodeficiency/non-obese diabetic

SP:

side population

VGP:

vertical growth phase

Literatur

  1. Aszterbaum M, Epstein J, Oro A et al. (1999) Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat Med 5: 1285–1291

    Article  PubMed  CAS  Google Scholar 

  2. Bani MR, Rak J, Adachi D et al. (1996) Multiple features of advanced melanoma recapitulated in tumorigenic variants of early stage (radial growth phase) human melanoma cell lines: evidence for a dominant phenotype. Cancer Res 56: 3075–3086

    PubMed  CAS  Google Scholar 

  3. Bigelow RL, Jen EY, Delehedde M et al. (2005) Sonic hedgehog induces epidermal growth factor dependent matrix infiltration in HaCaT keratinocytes. J Invest Dermatol 124: 457–465

    Article  PubMed  CAS  Google Scholar 

  4. Blanpain C, Fuchs E (2006) Epidermal stem cell of the skin. Annu Rev Cell Dev Biol 22: 339–373

    Article  PubMed  CAS  Google Scholar 

  5. Boukamp P (1999) Skin cancer (non-melanoma). In: Masters JRW, Palsson B (eds) Human cell culture, Vol. 1. Kluwer, Dordrecht, pp 251–257

  6. Boukamp P (2005) UV-induced skin cancer: similarities-variations. J Dtsch Dermatol Ges 3: 493–503

    Article  PubMed  Google Scholar 

  7. Boukamp P, Petrussevska RT, Breitkreutz D et al. (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106: 761–771

    Article  PubMed  CAS  Google Scholar 

  8. Boukamp P, Stanbridge EJ, Foo DY et al. (1990) c-Ha-ras oncogene expression in immortalized human keratinocytes (HaCaT) alters growth potential in vivo but lacks correlation with malignancy. Cancer Res 50: 2840–2847

    PubMed  CAS  Google Scholar 

  9. Clark EA, Golub TR, Lander ES, Hynes RO (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406: 532–535; Erratum Nature 2001; 411: 974

    Google Scholar 

  10. Dean M, Fojo T, Bates S (2005) Tumor stem cells and drug resistance. Nat Rev Cancer 5: 275–284

    Article  PubMed  CAS  Google Scholar 

  11. Detmar M, Velasco P, Richard L et al. (2000) Expression of vascular endothelial growth factor induces an invasive phenotype in human squamous cell carcinomas. Am J Pathol 156: 159–167

    PubMed  CAS  Google Scholar 

  12. Dicker AJ, Serewko MM, Dahler AL et al. (2000) Functional characterization of cultured cells derived from an intraepidermal carcinoma of the skin (IEC-1). Exp Cell Res 258: 352–360

    Article  PubMed  CAS  Google Scholar 

  13. Djouad F, Plence P, Bony C et al. (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102: 3837–3844

    Article  PubMed  CAS  Google Scholar 

  14. Dooley TP, Reddy SP, Wilborn TW, Davis RL (2003) Biomarkers of human cutaneous squamous cell carcinoma from tissues and cell lines identified by DNA microarrays and qRT-PCR. Biochem Biophys Res Commun 306: 1026–1036

    Article  PubMed  CAS  Google Scholar 

  15. Fan H, Oro AE, Scott MP, Khavari PA (1997) Induction of basal cell carcinoma features in transgenic human skin expressing Sonic Hedgehog. Nat Med 3: 788–792

    Article  PubMed  CAS  Google Scholar 

  16. Fang D, Nguyen TK, Leishear K et al. (2005) A tumorigenic subpopulation with stem cell properties in melanoma. Cancer Res 65: 9328–9337

    Article  PubMed  CAS  Google Scholar 

  17. Frank N, Margaryan A, Huang Y et al. (2005) ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 65: 4320–4333

    Article  PubMed  CAS  Google Scholar 

  18. Freshney RI (2000) Culture of animal cells. A manual of basic techniques, 4th edn. Wiley-Liss, New York

  19. Fusenig NE, Boukamp P (1998) Multiple stages and genetic alterations in immortalization, malignant transformation, and tumor progression of human skin keratinocytes. Mol Carcinog 23: 144–158

    Article  PubMed  CAS  Google Scholar 

  20. Giavazzi R, Garofalo A (2001) Syngeneic murine metastasis models. B16 melanoma. In: Brooks SA, Schumacher U (eds) Metastasis research protocols, Vol. 2. Methods in molecular medicine, Vol. 58. Humana Press, Totowa, pp 223–229

  21. Grando SA, Schofield OM, Skubitz AP et al. (1996) Nodular basal cell carcinoma in vivo vs in vitro. Establishment of pure cell cultures, cytomorphologic characteristics, ultrastructure, immunophenotype, biosynthetic activities, and generation of antisera. Arch Dermatol 132: 1185–1193

    Article  PubMed  CAS  Google Scholar 

  22. Grichnik JM (2006) Genomic instability and tumor stem cells. J Invest Dermatol 126: 1214–1216

    Article  PubMed  CAS  Google Scholar 

  23. Grichnik JM, Burch JA, Schulteis RD et al. (2006) Melanoma, a tumor based on a mutant stem cell? J Invest Dermatol 126: 142–153

    Article  PubMed  CAS  Google Scholar 

  24. Hatina J, Schulz WA, Fischer J et al. (2007) Tumorstammzellen – ein neues Konzept in der Tumorbiologie. Dtsch Med Wochenschr 132: 1629–1632

    Article  PubMed  CAS  Google Scholar 

  25. Hendrix MJ, Seftor EA, Kirschmann DA et al. (2003) Remodeling of the microenvironment by aggressive melanoma tumor cells. Ann N Y Acad Sci 995: 151–161

    Article  PubMed  CAS  Google Scholar 

  26. Herlyn D, Iliopoulos D, Jensen PJ et al. (1990) In vitro properties of human melanoma cells metastatic in nude mice. Cancer Res 50: 2296–2302

    PubMed  CAS  Google Scholar 

  27. Herlyn M, Thurin J, Balaban G et al. (1985) Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res 45: 5670–5676

    PubMed  CAS  Google Scholar 

  28. Hoek K, Rimm DL, Williams KR et al. (2004) Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res 64: 5270–5282

    Article  PubMed  CAS  Google Scholar 

  29. Hoff H, Belletti B, Zhang H, Sell C (2004) The transformed phenotype. In: Giordano A, Romano G (eds) Cell cycle control and dysregulation protocols. Methods in molecular biology, Vol. 285. Humana Press, Totowa, pp 95–104

  30. Hsu MY, Elder DA, Herlyn M (1999) Melanoma: the Wistar Melanoma (WM) cell lines. In: Masters JRW, Palsson B (eds) Human cell culture, Vol. 1. Kluwer, Dordrecht, pp 259–274

  31. Hutchin ME, Kariapper MS, Grachtchouk M et al. (2005) Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev 19: 214–223

    Article  PubMed  CAS  Google Scholar 

  32. Isaacs JT, Isaacs WB, Feitz WF, Scheres J (1986) Establishment and characterization of seven Dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostatic cancers. Prostate 9: 261–281

    Article  PubMed  CAS  Google Scholar 

  33. Ishiguro T, Nakajima M, Naito M et al. (1996) Identification of genes differentially expressed in B16 murine melanoma sublines with different metastatic potentials. Cancer Res 56: 875–879

    PubMed  CAS  Google Scholar 

  34. Ito A, Watabe K, Koma Y, Kitamura Y (2002) An attempt to isolate genes responsible for spontaneous and experimental metastasis in the mouse model. Histol Histopathol 17: 951–959

    PubMed  CAS  Google Scholar 

  35. Jacob K, Bosserhoff AK, Wach F et al. (1995) Characterization of selected strongly and weakly invasive sublines of a primary human melanoma cell line and isolation of subtractive cDNA clones. Int J Cancer 60: 668–675

    Article  PubMed  CAS  Google Scholar 

  36. Kamstrup MR, Gniadecki R, Skovgaard GL (2007) Putative cancer stem cells in cutaneous malignancies. Exp Dermatol 16: 297–301

    Article  PubMed  Google Scholar 

  37. Kath R, Jambrosic JA, Holland L et al. (1991) Development of invasive and growth factor-independent cell variants from primary human melanomas. Cancer Res 51: 2205–2211

    PubMed  CAS  Google Scholar 

  38. Kern MA, Helmbach H, Artuc M et al. (1997) Human melanoma cell lines selected in vitro displaying various levels of drug resistance against cisplatin, fotemustine, vindesine or etoposide: modulation of proto-oncogene expression. Anticancer Res 17: 4359–4370

    PubMed  CAS  Google Scholar 

  39. Knüchel R, Hofstädter F (1994) In-vitro-Kultur: Vom Gewebe zur Zelllinie. Pathologe 15: 141–149

    Article  PubMed  Google Scholar 

  40. Kocher T, Schraml P, Spagnoli CC et al. (2000) Identification of genes differentially expressed in melanoma sublines derived from a single surgical specimen characterised by different sensitivity to cytotoxic T-lymphocyte activity. Schweiz Med Wochenschr 130: 617–624

    PubMed  CAS  Google Scholar 

  41. Lotem M, Yehuda-Gafni O, Butnaryu E et al. (2003) Cytogenetic analysis of melanoma cell lines: subclone selection in long-term melanoma cell cultures. Cancer Genet Cytogenet 142: 87–91

    Article  PubMed  Google Scholar 

  42. Milyavsky M, Shats I, Erez N et al. (2003) Prolonged culture of telomerase-immortalized human fibroblasts leads to a premalignant phenotype. Cancer Res 63: 7147–7157

    PubMed  CAS  Google Scholar 

  43. Monzani E, Facchetti F, Galmozzi E et al. (2007) Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43: 935–946

    Article  PubMed  CAS  Google Scholar 

  44. Müller MM, Peter W, Mappes M et al. (2001) Tumor progression of skin carcinoma cells in vivo promoted by clonal selection, mutagenesis, and autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. Am J Pathol 159: 1567–1579

    Google Scholar 

  45. Pak BJ, Lee J, Thai BL et al. (2004) Radiation resistance of human melanoma analysed by retroviral insertional mutagenesis reveals a possible role for dopachrome tautomerase. Oncogene 23: 30–38

    Article  PubMed  CAS  Google Scholar 

  46. Popp S, Waltering S, Holtgreve-Grez H et al. (2000) Genetic characterization of a human skin carcinoma progression model: from primary tumor to metastasis. J Invest Dermatol 115: 1095–1103

    Article  PubMed  CAS  Google Scholar 

  47. Poste G, Doll J, Hart IR, Fidler IJ (1980) In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties. Cancer Res 40: 1636–1644

    PubMed  CAS  Google Scholar 

  48. Proby CM, Purdie KJ, Sexton CJ et al. (2000) Spontaneous keratinocyte cell lines representing early and advanced stages of malignant transformation of the epidermis. Exp Dermatol 9: 104–117

    Article  PubMed  CAS  Google Scholar 

  49. Reifenberger J (2004) Hereditäre Tumorsyndrome. Kutane Manifestationen und molekulare Pathogenese am Beispiel des Gorlin- und Cowden-Syndroms. Hautarzt 55: 942–951

    PubMed  CAS  Google Scholar 

  50. Ross DT, Scherf U, Eisen MB et al. (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24: 227–235

    Article  PubMed  CAS  Google Scholar 

  51. Satyamoorthy K, DeJesus E, Linnenbach AJ et al. (1997) Melanoma cell lines from different stages of progression and their biological and molecular analyses. Melanoma Res (Suppl 2) 7: S35–S42

    Google Scholar 

  52. Schulz WA (2005) Molecular biology of human cancers. Springer, Dordrecht

  53. Serewko MM, Popa C, Dahler AL et al. (2002) Alterations in gene expression and activity during squamous cell carcinoma development. Cancer Res 62: 3759–3765

    PubMed  CAS  Google Scholar 

  54. Shen Z-Y, Xu L-Y, Chen M-H et al. (2002) Progressive transformation of immortalized esophageal epithelial cells. World J Gastroenterol 8: 976–981

    PubMed  Google Scholar 

  55. Simon HG, Risse B, Jost M et al. (1996) Identification of differentially expressed messenger RNAs in human melanocytes and melanoma cells. Cancer Res 56: 3112–3117

    PubMed  CAS  Google Scholar 

  56. Skobe M, Fusenig NE (1998) Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc Natl Acad Sci USA 95: 1050–1055

    Article  PubMed  CAS  Google Scholar 

  57. Spellman JE Jr, Kulesz-Martin MF, Blumenson LE et al. (1995) Clonal interactions in a human squamous cell carcinoma. J Surg Res 58: 165–174

    Article  PubMed  CAS  Google Scholar 

  58. Stampfer MR, Yaswen P (2000) Culture models of human mammary epithelial cell transformation. J Mammary Gland Biol Neoplasia 5: 365–378

    Article  PubMed  CAS  Google Scholar 

  59. Streit M, Velasco P, Brown LF et al. (1999) Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am J Pathol 155: 441–452

    PubMed  CAS  Google Scholar 

  60. Vogl A, Sartorius U, Vogt T et al. (2005) Gene expression profile changes between melanoma metastases and their daughter cell lines: implication for vaccination protocols. J Invest Dermatol 124: 401–404

    Article  PubMed  CAS  Google Scholar 

  61. Wang E, Voiculescu S, Le Poole IC et al. (2006) Clonal persistence and evolution during a decade of recurrent melanoma. J Invest Dermatol 126: 1372–1377

    Article  PubMed  CAS  Google Scholar 

  62. Ward RJ, Dirks PB (2007) Cancer stem cells: At the headwaters of tumor development. Annu Rev Pathol Mech Dis 2: 175–189

    Article  CAS  Google Scholar 

  63. Wobus AM (2003) Zellkulturtechniken, Zellmodelle und Tissue Engineering. In: Ganten D, Ruckpaul K (Hrsg) Grundlagen der Molekularen Medizin, 2. Aufl. Springer, Berlin Heidelberg New York Tokyo, S 255–298

  64. Zebda N, Bailly M, Brown S et al. (1994) Expression of PNA-binding sites on specific glycoproteins by human melanoma cells is associated with a high metastatic potential. J Cell Biochem 54: 161–173

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Die Autoren sind Herrn Univ.-Prof. Dr. Wolfgang A. Schulz und einem anonymen Gutachter für das kritische Lesen des Manuskripts und Frau Prof. Mary Hendrix, Frau Dr. Angela Hess, Frau Dr. Denisa Kacerovska, Herrn Dr. Josef Bizik und Herrn Dr. Jan Peychl für die Überlassung von Originalabbildungen dankbar. PD Jiri Hatina wurde durch die DAAD-Gastdozentur an der Heinrich-Heine Universität Düsseldorf unterstützt.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hatina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatina, J., Ruzicka, T. Stellenwert der Zellkulturmodelle in kutaner Tumorbiologie. Hautarzt 59, 36–45 (2008). https://doi.org/10.1007/s00105-007-1436-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-007-1436-4

Schlüsselwörter

Keywords

Navigation