Skip to main content
Log in

Molekulare Grundlagen und pathogeneseorientierte Therapie epithelialer Tumoren der Haut

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Epitheliale Tumoren der Haut, d. h. Basalzellkarzinome und Plattenepithelkarzinome, sind die häufigsten Tumorerkrankungen des Menschen und zeigen eine stetig steigende Inzidenz. Das Verständnis der für die Entstehung dieser Tumoren verantwortlichen genetischen Veränderungen ist von entscheidender Bedeutung für die Entwicklung neuer pathogeneseorientierter Therapien. Basalzellkarzinome sind durch eine generelle Aktivierung des Sonic-Hedgehog- (SHH-)Signalweges charakterisiert, die in der Mehrzahl der Tumoren durch Mutationen in den Genen PTCH und SMOH hervorgerufen wird. Zusätzlich finden sich in etwa der Hälfte der Fälle zumeist UV-typische Mutationen im Tumorsuppressorgen TP53. Plattenepithelkarzinome zeigen keine PTCH- oder SMOH-Mutationen, wohingegen TP53-Mutationen nahezu immer nachweisbar sind. Zusätzlich finden sich oftmals Veränderungen in Zellzyklus-regulierenden Genen, darunter besonders oft eine Inaktivierung des Tumorsuppressorgens CDKN2A. Spezifische Inhibitoren des SHH-Signalweges zur Behandlung des Basalzellkarzinoms befinden sich zurzeit noch im experimentellen Stadium. Die lokale Immuntherapie epithelialer Tumoren stellt ein weiteres pathogeneseorientiertes Therapiekonzept dar, das eine gegen den Tumor gerichtete zelluläre Immunantwort stimuliert, aber auch direkt apoptotische Signale in den Tumorzellen induziert.

Abstract

Basal cell carcinomas and squamous cell carcinomas are the most common human cancers and increasing in incidence. The development of novel, pathogenesis-based therapies requires a better knowledge of the molecular mechanisms leading to the development of these tumors. Basal cell carcinomas are characterized by aberrant activation of Sonic-Hedgehog (SHH) signaling due to mutations in the PTCH or SMOH genes. In addition, about 50% of the cases carry mutations in the TP53 tumor suppressor gene. Squamous cell carcinomas lack alterations of SHH signaling, while TP53 mutations are detectable in virtually all cases. Alterations in cell cycle regulatory genes, such as CDKN2A, are also common. Recently, specific inhibitors of the SHH-signaling pathway have been developed and shown promising results in preclinical studies on experimental basal cell carcinomas. However, the clinical significance of such targeted molecular therapy remains to be evaluated. Another successful pathogenesis-based therapy, which is already in clinical use, is the administration of topic immune response modifier imiquimod. This drug can eradicate non-melanoma skin cancers by different mechanisms, including cytokine-mediated stimulation of the anti-tumor immune response, as well as the induction of tumor cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Ahmadian A, Ren ZP, Williams C et al. (1998) Genetic instability in the 9q22.3 region is a late event in the development of squamous cell carcinoma. Oncogene 17:1837–1843

    Article  CAS  PubMed  Google Scholar 

  2. Altaba A, Sanchez P, Dahmane N (2002) Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2:361–372

    Article  PubMed  Google Scholar 

  3. Bastiaens MT, ter Huurne JA, Kielich C et al. (2001) Melanocortin-1 receptor gene variants determine the risk of nonmelanoma skin cancer independently of fair skin and red hair. Am J Hum Genet 68:884–894

    Article  CAS  PubMed  Google Scholar 

  4. Berman DM, Karhadkar SS, Hallahan AR et al. (2002) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297:1559–1561

    Article  CAS  PubMed  Google Scholar 

  5. Diepgen TL, Mahler V (2002) The epidemiology of skin cancer. Br J Dermatol Suppl 61:1–6

    Article  Google Scholar 

  6. Dlugosz A, Merlino G, Yuspa SH (2002) Progress in cutaneous cancer research. J Invest Dermatol Symp Proc 7:17–26

    Article  Google Scholar 

  7. Gailani MR, Stahle-Backdahl M, Leffell DJ et al. (1996) The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 14:78–81

    CAS  PubMed  Google Scholar 

  8. Gorlin RJ (1995) Nevoid basal cell carcinoma syndrome. Dermatol Clin 13:113–125

    CAS  PubMed  Google Scholar 

  9. Grossman D, Leffell DJ (1997) The molecular basis of nonmelanoma skin cancer: new understanding. Arch Dermatol 133:1263–1270

    Article  CAS  PubMed  Google Scholar 

  10. Hahn H, Wicking C, Zaphiropoulous PG et al. (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851

    CAS  PubMed  Google Scholar 

  11. Hemmi H, Kaisho T, Takeuchi O et al. (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200

    Article  CAS  PubMed  Google Scholar 

  12. Housman TS, Feldman SR, Williford PM et al. (2003) Skin cancer is among the most costly of all cancers to treat for the Medicare population. J Am Acad Dermatol 48:425–429

    Article  PubMed  Google Scholar 

  13. Hu Z, Bonifas JM, Aragon G et al. (2003) Evidence for lack of enhanced hedgehog target gene expression in common extracutaneous tumors. Cancer Res 63:923–928

    CAS  PubMed  Google Scholar 

  14. Johnson RL, Rothman AL, Xie J et al. (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1671

    CAS  PubMed  Google Scholar 

  15. Lear JT, Smith AG, Strange RC, Fryer AA (2000) Detoxifying enzyme genotypes and susceptibility to cutaneous malignancy. Br J Dermatol 142:8–15

    Article  CAS  PubMed  Google Scholar 

  16. Mortier L, Marchetti P, Delaporte E et al. (2002) Progression of actinic keratosis to squamous cell carcinoma of the skin correlates with deletion of the 9p21 region encoding the p16(INK4a) tumor suppressor. Cancer Lett 176:205–214

    Article  CAS  PubMed  Google Scholar 

  17. Nickoloff BJ, Qin JZ, Chaturvedi V et al. (2002) Life and death signaling pathways contributing to skin cancer. J Invest Dermatol Symp Proc 7:27–35

    Article  CAS  Google Scholar 

  18. O’Connor DP, Kay EW, Leader M et al. (2001) A high degree of chromosomal instability at 13q14 in cutaneous squamous cell carcinomas: indication for a role of a tumour suppressor gene other than Rb. Mol Pathol 54:165–169

    Article  CAS  PubMed  Google Scholar 

  19. Owens DM, Watt FM (2003) Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer 3:444–451

    Article  CAS  PubMed  Google Scholar 

  20. Regl G, Neill GW, Eichberger T et al. (2002) Human GLI2 and GLI1 are part of a positive feedback mechanism in Basal Cell Carcinoma. Oncogene 21:5529–5539

    Article  CAS  PubMed  Google Scholar 

  21. Reifenberger J, Wolter M, Weber RG et al. (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58:1798–1803

    CAS  PubMed  Google Scholar 

  22. Schön MP, Reifenberger J, von Schmiedeberg S et al. (1999) Multiple basal cell carcinomas associated with hairy cell leukemia. Br J Dermatol 140:150–153

    Article  PubMed  Google Scholar 

  23. Schön M, Bong AB, Drewniok C et al. (2003) Tumor-selective induction of apoptosis and the small-molecule immune response modifier imiquimod. J Natl Cancer Inst 95:1138–1149

    PubMed  Google Scholar 

  24. Shimizu T, Izumi H, Oga A et al. (2001) Epidermal growth factor receptor overexpression and genetic aberrations in metastatic squamous-cell carcinoma of the skin. Dermatology 202:203–206

    Article  CAS  PubMed  Google Scholar 

  25. Stanley MA (2002) Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential. Clin Exp Dermatol 27:571–577

    CAS  PubMed  Google Scholar 

  26. Suzuki H, Wang B, Shivji GM et al. (2000) Imiquimod, a topical immune response modifier, induces migration of Langerhans cells. J Invest Dermatol 114:135–141

    Google Scholar 

  27. Teh MT, Wong ST, Neill GW et al. (2002) FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res 62:4773–4780

    CAS  PubMed  Google Scholar 

  28. Tsao H (2001) Genetics of nonmelanoma skin cancer. Arch Dermatol 137:1486–1492

    CAS  PubMed  Google Scholar 

  29. Tyring S, Conant M, Marini M et al. (2002) Imiquimod; an international update on therapeutic uses in dermatology. Int J Dermatol 41:810–816

    Article  CAS  PubMed  Google Scholar 

  30. Wang XQ, Rothnagel JA (2001) Post-transcriptional regulation of the GLI1 oncogene by the expression of alternative 5’-untranslated regions. J Biol Chem 276:1311–1316

    Article  CAS  PubMed  Google Scholar 

  31. Wennberg AM (2000) Basal cell carcinoma—new aspects of diagnosis and treatment. Acta Derm Venereol Suppl (Stockh) 209:5–25

    Google Scholar 

  32. Williams JA, Guicherit OM, Zaharian BI et al. (2003) Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci USA 100:4616–4621

    Article  CAS  PubMed  Google Scholar 

  33. Wolter M, Reifenberger J, Sommer C et al. (1997) Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 57:2581–2585

    CAS  PubMed  Google Scholar 

  34. Xie J, Murone M, Luoh SM et al. (1998) Activating smoothened mutations in sporadic basal-cell carcinoma. Nature 391:90–92

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Reifenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reifenberger, J., Schön, M.P. Molekulare Grundlagen und pathogeneseorientierte Therapie epithelialer Tumoren der Haut. Hautarzt 54, 1164–1170 (2003). https://doi.org/10.1007/s00105-003-0631-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-003-0631-1

Schlüsselwörter

Keywords

Navigation