Skip to main content
Log in

Robotik und computergestützte Verfahren in der kranialen Neurochirurgie

Robotics and computer-assisted procedures in cranial neurosurgery

  • Leitthema
  • Published:
Die Chirurgie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die medizintechnischen Innovationen der letzten Jahrzehnte haben Operationen in hochsensiblen Gehirnarealen sicherer gemacht.

Fragestellung

Darstellung, inwiefern Computerunterstützung und Robotik Einzug in die klinische Neurochirurgie gehalten haben.

Material und Methode

Auswertung der wissenschaftlichen Literatur sowie Analyse des Zertifizierungsstands der entsprechenden medizintechnischen Produkte.

Ergebnisse

Die rasante Entwicklung der Computertechnologie und die Umstellung auf digitale Bildverarbeitung haben zur flächendeckenden Einführung neurochirurgischer Planungssoftware und intraoperativer Neuronavigation geführt. Bei robotischen Verfahren beschränkt sich die Durchdringung aktuell noch weitgehend auf die automatische Einstellung von Trajektorien.

Schlussfolgerungen

Die Digitalisierung der Bildgebung hat die Neurochirurgie grundlegend transformiert. Im Bereich der kranialen Neurochirurgie sind mittlerweile computergestützte nur noch in wenigen Fällen von nichtcomputergestützten Verfahren zu unterscheiden. Im Bereich der Robotik ist in den kommenden Jahren mit bedeutenden Innovationen für die klinische Implementierung zu rechnen.

Abstract

Background

The medical technical innovations over the last decade have made operations in the highly sensitive regions of the brain much safer.

Objective

Presentation of how far computer assistance and robotics have become incorporated into clinical neurosurgery.

Material and method

Evaluation of the scientific literature and analysis of the certification status of the corresponding medical devices.

Results

The rapid development of computer technology and the switch to digital imaging has led to the widespread introduction of neurosurgical planning software and intraoperative neuronavigation. In the field of robotics, the penetration into clinical neurosurgery is currently still largely limited to the automatic setting of trajectories.

Conclusion

The digitalization of imaging has fundamentally transformed neurosurgery. In the field of cranial neurosurgery, computer-assisted procedures can now be distinguished from noncomputer-assisted procedures only in a handful of cases. In the coming years important innovations for the clinical implementation can be expected in the field of robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Buchlak QD, Esmaili N, Leveque JC et al (2020) Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review. Neurosurg Rev 43(5):1235–1253

    Article  PubMed  Google Scholar 

  2. Cannizzaro D, Zaed I, Safa A et al (2022) Augmented Reality in Neurosurgery, State of Art and Future Projections. A Systematic Review. Front Surg 9:864792

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roethe AL, Rösler J, Misch M, Vajkoczy P, Picht T (2022) Augmented reality visualization in brain lesions: a prospective randomized controlled evaluation of its potential and current limitations in navigated microneurosurgery. Acta Neurochir (Wien) 164(1):3–14

    Article  PubMed  Google Scholar 

  4. Naik A, Smith EJ, Barreau A, Nyaeme M, Cramer SW, Najafali D, Krist DT, Arnold PM, Hassaneen W (2022) Comparison of fluorescein sodium, 5‑ALA, and intraoperative MRI for resection of high-grade gliomas: A systematic review and network meta-analysis. J Clin Neurosci 98:240–247 (Apr)

    Article  CAS  PubMed  Google Scholar 

  5. Bastos DCA, Juvekar P, Tie Y et al (2021) Challenges and opportunities of Intraoperative 3D ultrasound with Neuronavigation in relation to Intraoperative MRI. Front Oncol 11:656519

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hajtovic S, Mogilner A, Ard J, Gautreaux JE, Britton H, Fatterpekar G, Young MG, Placantonakis DG (2020) Awake laser ablation for patients with tumors in eloquent brain areas: operative technique and case series. Cureus 12(12):20

    Google Scholar 

  7. Kamath AA, Friedman DD, Akbari SH, Kim AH, Tao Y, Luo J, Leuthardt EC (2019) Glioblastoma treated with magnetic resonance imaging-guided laser interstitial thermal therapy: Safety, efficacy, and outcomes. Neurosurgery 84(4):836–843

    Article  PubMed  Google Scholar 

  8. Du VX, Gandhi SV, Rekate HL, Mehta AD (2017) Laser interstitial thermal therapy: A first line treatment for seizures due to hypothalamic hamartoma? Epilepsia 58:77–84 (Jun)

    Article  PubMed  Google Scholar 

  9. Zhou Y, Kargl SG, Hwang JH (2011) The effect of the scanning pathway in high-intensity focused ultrasound therapy on lesion production. Ultrasound Med Biol 37(9):1457–1468

    Article  PubMed  Google Scholar 

  10. Chang WS, Jung HH, Zadicario E, Rachmilevitch I, Tlusty T, Vitek S, Chang JW (2016) Factors associated with successful magnetic resonance-guided focused ultrasound treatment: Efficiency of acoustic energy delivery through the skull. J Neurosurg 124(2):411–416

    Article  PubMed  Google Scholar 

  11. Liu Y, Stojadinovic S, Hrycushko B, Wardak Z, Lau S, Lu W, Yan Y, Jiang SB, Zhen X, Timmerman R, Nedzi L (2017) A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS ONE 12(10):e185844

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhou Z, Sanders JW, Johnson JM, Gule-Monroe MK, Chen MM, Briere TM, Wang Y, Son JB, Pagel MD, Li J, Ma J (2020) Computer-aided detection of brain metastases in T1-weighted MRI for stereotactic radiosurgery using deep learning single-shot detectors. Radiology 295(2):407–415 (May)

    Article  PubMed  Google Scholar 

  13. Hamamci A, Kucuk N, Karaman K, Engin K, Unal G (2011) Tumor-cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans Med Imaging 31(3):790–804

    Article  PubMed  Google Scholar 

  14. Khosravi M, Atashzar SF, Gilmore G, Jog MS, Patel RV (2020) Intraoperative localization of STN during DBS surgery using a data-driven model. IEEE J Transl Eng Health Med 8:1–9

    Article  Google Scholar 

  15. Valsky D, Blackwell KT, Tamir I, Eitan R, Bergman H, Israel Z (2020) Real-time machine learning classification of pallidal borders during deep brain stimulation surgery. J Neural Eng 17(1):16021

    Article  PubMed  Google Scholar 

  16. Minchev G et al (2020) Frameless Stereotactic Brain Biopsies: Comparison of Minimally Invasive Robot-Guided and Manual Arm-Based Technique. Oper Neurosurg 19:292–301

    Article  Google Scholar 

  17. Zimmermann M, Krishnan R, Raabe A, Seifert V (2004) Robot-assisted navigated endoscopic ventriculostomy: implementation of a new technology and first clinical results. Acta Neurochir 146:697–704

    Article  CAS  PubMed  Google Scholar 

  18. Brandmeir N, Acharya V, Sather M (2016) Robot assisted Stereotactic laser ablation for a Radiosurgery resistant Hypothalamic Hamartoma. Cureus 8:e581

    PubMed  PubMed Central  Google Scholar 

  19. Zimmermann M, Krishnan R, Raabe A, Seifert V (2002) Robot-assisted navigated neuroendoscopy. Neurosurgery 51:1442–1446

    Article  Google Scholar 

  20. Mallereau C‑H et al (2022) Pushing the boundaries of accuracy and reliability during stereotactic procedures: A prospective study on 526 biopsies comparing the frameless robotic and Image-Guided Surgery systems. J Clin Neurosci Off J Neurosurg Soc Australas 95:203–212

    Google Scholar 

  21. Chiu T‑L, Lin S‑Z, Ahmed T, Huang C‑Y, Chen C‑H (2022) Pilot study of a new type of machine vision-assisted stereotactic neurosurgery for EVD placement. Acta Neurochir 164:2385–2393

    Article  PubMed  Google Scholar 

  22. Holcomb AJ et al (2022) Practice patterns in transoral robotic surgery: results of an American head and neck society survey. J Robot Surg. https://doi.org/10.1007/s11701-022-01448-z

    Article  PubMed  Google Scholar 

  23. Marcus HJ et al (2015) da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety. Neurosurg Rev 38:367–371 (discussion 371)

    Article  PubMed  Google Scholar 

  24. Xiong L, Chng CB, Chui CK, Yu P, Li Y (2017) Shared control of a medical robot with haptic guidance. Int J Comput Assist Radiol Surg 12:137–147

    Article  PubMed  Google Scholar 

  25. Seung S et al (2017) Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery. Eng Med 231:3–19

    Article  Google Scholar 

  26. Baker RR, Payne C, Yu Y, Mohseni M, Connell JJ, Lin F, Harrison IF, Southern P, Rudrapatna US, Stuckey DJ, Kalber TL (2022) Image-Guided Magnetic Thermoseed Navigation and Tumor Ablation Using a Magnetic Resonance Imaging System. Adv Sci 9(12):e2105333. https://doi.org/10.1002/advs.202105333

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Picht.

Ethics declarations

Interessenkonflikt

P. Vajkoczy hat in der Vergangenheit als Berater für die Firmen Brainlab und Accuray und T. Picht für die Firma Brainlab fungiert.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

A. Seekamp, Kiel

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picht, T., Vajkoczy, P. Robotik und computergestützte Verfahren in der kranialen Neurochirurgie. Chirurgie 94, 299–306 (2023). https://doi.org/10.1007/s00104-022-01783-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-022-01783-9

Schlüsselwörter

Keywords

Navigation