Skip to main content
Log in

ICG-Lymphknoten-Mapping in der Tumorchirurgie des oberen Gastrointestinaltrakts

ICG lymph node mapping in cancer surgery of the upper gastrointestinal tract

  • Leitthema
  • Published:
Die Chirurgie Aims and scope Submit manuscript

Zusammenfassung

Die Wichtigkeit der Beurteilung des N‑Status beim Magenkarzinom, bei Tumoren des gastroösophagealen Übergangs sowie beim Ösophaguskarzinom ist unumstritten. Bis dato gibt es jedoch keine international validierte Methode zum Lymphknoten-Mapping beim Ösophagus- und Magenkarzinom. Nahinfrarot-Fluoreszenz-Bildgebung (NIR) ist eine innovative Technik aus dem Bereich der Schwingungsspektroskopien, welche in Kombination mit dem Fluoreszenz-Farbstoff Indocyaningrün (ICG) die intraoperative Darstellung von Strukturen in Echtzeit erlaubt. Für ICG finden sich im Bereich der onkologischen Chirurgie aktuell 4 Anwendungsgebiete: intraoperative Echtzeit-Angiographie zur Darstellung der Perfusion, Lymphographie zur Darstellung der Lymphgefäße, Darstellung solider Tumoren sowie (Wächter‑)Lymphknoten-Mapping. Für die Darstellung des Lymphabflussgebiets und somit der konsekutiven Lymphkoten muss die ICG-Injektion peritumoral erfolgen. Verschiedene Studien haben die Machbarkeit der peritumoralen Injektion von ICG 15 min bis 3 Tage präoperativ mit konsekutiver Darstellung der Lymphknoten intraoperativ bewiesen. Bislang fehlen prospektiv-randomisierte Studien zur Validierung der Methodik. Die Anwendung von ICG zum Lymphknoten-Mapping und Darstellung von Wächterlymphknoten beim Magenkarzinom hingegen ist an großen Kohorten sowie prospektiv-randomisierten Studien erforscht. Bis heute fehlen für die Anwendung des ICG-gesteuerten Lymphknoten-Mappings in der Chirurgie des oberen Gastrointestinaltrakts multizentrische Studien. Methoden der künstlichen Intelligenz (KI) können in Zukunft helfen, diese Techniken automatisiert auszuwerten sowie intraoperative Entscheidungen zu unterstützen und somit die chirurgisch-onkologische Qualität zu verbessern.

Abstract

The importance of the assessment of the N‑status in gastric carcinoma, tumors of the gastroesophageal junction and esophageal cancer is undisputed; however, there is currently no internationally validated method for lymph node mapping in esophageal and gastric cancer. Near-infrared fluorescence imaging (NIR) is an innovative technique from the field of vibrational spectroscopy, which in combination with the fluorescent dye indocyanine green (ICG) enables intraoperative real-time visualization of anatomical structures. The ICG currently has four fields of application in oncological surgery: intraoperative real-time angiography for visualization of perfusion, lymphography for visualization of lymphatic vessels, visualization of solid tumors, and (sentinel) lymph node mapping. For imaging of the lymph drainage area and therefore the consecutive lymph nodes, peritumoral injection of ICG must be performed. Several studies have demonstrated the feasibility of peritumoral injection of ICG administered 15 min to 3 days preoperatively with subsequent intraoperative visualization of the lymph nodes. So far prospective randomized studies on the validation of the method are still lacking. In contrast, the use of ICG for lymph node mapping and visualization of sentinel lymph nodes in gastric cancer has been performed in large cohorts as well as in prospective randomized settings. Up to now, multicenter studies for ICG-guided lymph node mapping during oncological surgery of the upper gastrointestinal tract are lacking. Artificial intelligence methods can help to evaluate these techniques in an automated manner in the future as well as to support intraoperative decision making and therefore to improve the quality of oncological surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Barbato G, Cammelli F, Braccini G et al (2022) Fluorescent lymphography for thoracic duct identification: Initial experience of a simplified and feasible ICG administration. Int J Med Robot 18(3):e2380. https://doi.org/10.1002/rcs.2380

    Article  PubMed  Google Scholar 

  2. Barnes TG, Macgregor T, Sgromo B et al (2021) Near infra-red fluorescence identification of the thoracic duct to prevent chyle leaks during oesophagectomy. Surg Endosc. https://doi.org/10.1007/s00464-021-08912-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chakedis J, Shirley LA, Terando AM et al (2018) Identification of the thoracic duct using Indocyanine green during cervical lymphadenectomy. Ann Surg Oncol 25:3711–3717

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen QY, Xie JW, Zhong Q et al (2020) Safety and efficacy of indocyanine green tracer-guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer: a randomized clinical trial. JAMA Surg 155:300–311

    Article  PubMed  Google Scholar 

  5. Chen QY, Zhong Q, Li P et al (2021) Comparison of submucosal and subserosal approaches toward optimized indocyanine green tracer-guided laparoscopic lymphadenectomy for patients with gastric cancer (FUGES-019): a randomized controlled trial. BMC Med 19:276

    Article  PubMed  PubMed Central  Google Scholar 

  6. Claassen YHM, de Steur WO, Hartgrink HH et al (2018) Surgicopathological quality control and protocol adherence to lymphadenectomy in the CRITICS gastric cancer trial. Ann Surg 268:1008–1013

    Article  PubMed  Google Scholar 

  7. Coburn N, Cosby R, Klein L et al (2018) Staging and surgical approaches in gastric cancer: a systematic review. Cancer Treat Rev 63:104–115

    Article  PubMed  Google Scholar 

  8. Desiderio J, Trastulli S, Gemini A et al (2018) Fluorescence image-guided lymphadenectomy using indocyanine green and near infrared technology in robotic gastrectomy. Chin J Cancer Res 30:568–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frangioni JV (2008) New technologies for human cancer imaging. J Clin Oncol 26:4012–4021

    Article  PubMed  PubMed Central  Google Scholar 

  10. Garrow CR, Kowalewski KF, Li L et al (2021) Machine learning for surgical phase recognition: a systematic review. Ann Surg 273(4):684–693. https://doi.org/10.1097/SLA.0000000000004425

    Article  PubMed  Google Scholar 

  11. Hachey KJ, Gilmore DM, Armstrong KW et al (2016) Safety and feasibility of near-infrared image-guided lymphatic mapping of regional lymph nodes in esophageal cancer. J Thorac Cardiovasc Surg 152:546–554

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hashimoto DA, Rosman G, Witkowski ER et al (2019) Computer vision analysis of Intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann Surg 270:414–421

    Article  PubMed  Google Scholar 

  13. He M, Jiang Z, Wang C et al (2018) Diagnostic value of near-infrared or fluorescent indocyanine green guided sentinel lymph node mapping in gastric cancer: a systematic review and meta-analysis. J Surg Oncol 118:1243–1256

    Article  CAS  PubMed  Google Scholar 

  14. Hosogi H, Yagi D, Sakaguchi M et al (2021) Upper mediastinal lymph node dissection based on mesenteric excision in esophageal cancer surgery: confirmation by near-infrared image-guided lymphatic mapping and the impact on locoregional control. Esophagus 18:219–227

    Article  PubMed  Google Scholar 

  15. In U (2006) In: Gospodarowicz MK, O’Sullivan B, Sobin LH (Hrsg) Prognostic factors in cancer. Wiley,

    Google Scholar 

  16. Jimenez-Lillo J, Villegas-Tovar E, Momblan-Garcia D et al (2021) Performance of indocyanine-green imaging for sentinel lymph node mapping and lymph node metastasis in esophageal cancer: systematic review and meta-analysis. Ann Surg Oncol 28:4869–4877

    Article  PubMed  Google Scholar 

  17. Kim TH, Kong SH, Park JH et al (2018) Assessment of the completeness of lymph node dissection using near-infrared imaging with indocyanine green in laparoscopic gastrectomy for gastric cancer. J Gastric Cancer 18:161–171

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kwon IG, Son T, Kim HI et al (2019) Fluorescent lymphography-guided lymphadenectomy during robotic radical gastrectomy for gastric cancer. JAMA Surg 154:150–158

    Article  PubMed  Google Scholar 

  19. Lan YT, Huang KH, Chen PH et al (2017) A pilot study of lymph node mapping with indocyanine green in robotic gastrectomy for gastric cancer. SAGE Open Med 5:2050312117727444

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lin GT, Chen QY, Zheng CH et al (2020) Lymph node noncompliance affects the long-term prognosis of patients with gastric cancer after laparoscopic total gastrectomy. J Gastrointest Surg 24:540–550

    Article  PubMed  Google Scholar 

  21. Luo RJ, Zhu ZY, He ZF et al (2020) Efficacy of indocyanine green fluorescence angiography in preventing anastomotic leakage after McKeown minimally invasive esophagectomy. Front Oncol 10:619822

    Article  PubMed  Google Scholar 

  22. Moehler M, Al-Batran SE, Andus T et al (2019) S3-Leitlinie Magenkarzinom – Diagnostik und Therapie der Adenokarzinome des Magens und des ösophagogastralen Übergangs. Z Gastroenterol 57:1517–1632

    PubMed  Google Scholar 

  23. Muguruma N, Ito S, Hayashi S et al (1998) Antibodies labeled with fluorescence-agent excitable by infrared rays. J Gastroenterol 33:467–471

    Article  CAS  PubMed  Google Scholar 

  24. Nerup N, Andersen HS, Ambrus R et al (2017) Quantification of fluorescence angiography in a porcine model. Langenbecks Arch Surg 402:655–662

    Article  PubMed  Google Scholar 

  25. Nerup N, Svendsen MBS, Svendsen LB et al (2020) Feasibility and usability of real-time intraoperative quantitative fluorescent-guided perfusion assessment during resection of gastroesophageal junction cancer. Langenbecks Arch Surg 405:215–222

    Article  PubMed  Google Scholar 

  26. Ogawa M, Regino CA, Seidel J et al (2009) Dual-modality molecular imaging using antibodies labeled with activatable fluorescence and a radionuclide for specific and quantitative targeted cancer detection. Bioconjug Chem 20:2177–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Okubo K, Uenosono Y, Arigami T et al (2018) Quantitative assessment of fluorescence intensity of ICG in sentinel nodes in early gastric cancer. Gastric Cancer 21:776–781

    Article  PubMed  Google Scholar 

  28. Park SY, Suh JW, Kim DJ et al (2018) Near-infrared lymphatic mapping of the recurrent laryngeal nerve nodes in T1 esophageal cancer. Ann Thorac Surg 105:1613–1620

    Article  PubMed  Google Scholar 

  29. Peyre CG, Hagen JA, Demeester SR et al (2008) The number of lymph nodes removed predicts survival in esophageal cancer: an international study on the impact of extent of surgical resection. Ann Surg 248:549–556

    Article  PubMed  Google Scholar 

  30. Porschen R, Buck A, Fischbach W et al (2015) S3-Leitlinie Diagnostik und Therapie der Plattenepithelkarzinome und Adenokarzinome des Ösophagus. Z Gastroenterol 53:1288–1347

    CAS  PubMed  Google Scholar 

  31. Romanzi A, Mancini R, Ioni L et al (2021) ICG-NIR-guided lymph node dissection during robotic subtotal gastrectomy for gastric cancer. A single-centre experience. Int J Med Robot 17:e2213

    Article  PubMed  Google Scholar 

  32. Schaafsma BE, Mieog JS, Hutteman M et al (2011) The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol 104:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schlottmann F, Barbetta A, Mungo B et al (2017) Identification of the lymphatic drainage pattern of esophageal cancer with near-infrared fluorescent imaging. J Laparoendosc Adv Surg Tech A 27:268–271

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shao J, Zheng X, Feng L et al (2020) Targeting fluorescence imaging of RGD-modified indocyanine green micelles on gastric cancer. Front Bioeng Biotechnol 8:575365

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shimizu S, Kamiike W, Hatanaka N et al (1995) New method for measuring ICG Rmax with a clearance meter. World J Surg 19:113–118 (discussion 118)

    Article  CAS  PubMed  Google Scholar 

  36. Skubleny D, Dang JT, Skulsky S et al (2018) Diagnostic evaluation of sentinel lymph node biopsy using indocyanine green and infrared or fluorescent imaging in gastric cancer: a systematic review and meta-analysis. Surg Endosc 32:2620–2631

    Article  PubMed  Google Scholar 

  37. Tajima Y, Yamazaki K, Masuda Y et al (2009) Sentinel node mapping guided by indocyanine green fluorescence imaging in gastric cancer. Ann Surg 249:58–62

    Article  PubMed  Google Scholar 

  38. Thammineedi SR, Patnaik SC, Saksena AR et al (2020) The utility of indocyanine green angiography in the assessment of perfusion of gastric conduit and proximal esophageal stump against visual assessment in patients undergoing esophagectomy: a prospective study. Indian J Surg Oncol 11:684–691

    Article  PubMed  PubMed Central  Google Scholar 

  39. Troyan SL, Kianzad V, Gibbs-Strauss SL et al (2009) The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol 16:2943–2952

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vecchiato M, Martino A, Sponza M et al (2020) Thoracic duct identification with indocyanine green fluorescence during minimally invasive esophagectomy with patient in prone position. Dis Esophagus 33(12):doaa30. https://doi.org/10.1093/dote/doaa030

    Article  PubMed  PubMed Central  Google Scholar 

  41. Visser E, Markar SR, Ruurda JP et al (2019) Prognostic value of lymph node yield on overall survival in esophageal cancer patients: a systematic review and meta-analysis. Ann Surg 269:261–268

    Article  PubMed  Google Scholar 

  42. Wittekind C (2016) TNM: Klassifikation maligner Tumoren. John Wiley & Sons

    Google Scholar 

  43. Xiong L, Gazyakan E, Yang W et al (2014) Indocyanine green fluorescence-guided sentinel node biopsy: a meta-analysis on detection rate and diagnostic performance. Eur J Surg Oncol 40:843–849

    Article  CAS  PubMed  Google Scholar 

  44. Yano K, Nimura H, Mitsumori N et al (2012) The efficiency of micrometastasis by sentinel node navigation surgery using indocyanine green and infrared ray laparoscopy system for gastric cancer. Gastric Cancer 15:287–291

    Article  PubMed  Google Scholar 

  45. Yukaya T, Saeki H, Kasagi Y et al (2015) Indocyanine green fluorescence angiography for quantitative evaluation of gastric tube perfusion in patients undergoing esophagectomy. J Am Coll Surg 221:e37–42

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans F. Fuchs.

Ethics declarations

Interessenkonflikt

H.F. Fuchs: Intuitive Surgical, ESOMAP trial (educational grant), Active Surgical; Advisory Board Medtronic; Advisory Board Stryker; Advisory Board DistalMotion; Advisory Board Fortimedix Surgical; stock options. D. Müller, R. Stier, J. Straatman, B. Babic, L. Schiffmann, J. Eckhoff, T. Schmidt und C. Bruns und geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

I. Gockel, Leipzig

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, D., Stier, R., Straatman, J. et al. ICG-Lymphknoten-Mapping in der Tumorchirurgie des oberen Gastrointestinaltrakts. Chirurgie 93, 925–933 (2022). https://doi.org/10.1007/s00104-022-01659-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-022-01659-y

Schlüsselwörter

Keywords

Navigation