Skip to main content
Log in

Technische Innovationen und Blick in die Zukunft

Technical innovations and future perspectives

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Digitale Systeme haben in den letzten Jahrzehnten zunehmend Einzug in den modernen Operationssaal gehalten. Dadurch hat sich ein massiver Wandel, insbesondere in der minimal-invasiven Chirurgie, vollzogen.

Ziel der Arbeit

Der Artikel soll einen Überblick geben zu den aktuellen technischen Innovationen und den Perspektiven von Digitalisierung und künstlicher Intelligenz (KI) in der Chirurgie.

Material und Methoden

Der Artikel basiert auf einer Literaturrecherche über PubMed und Forschungsarbeiten der beteiligten Koautoren.

Ergebnisse

Aktuelle Forschungsarbeiten befassen sich zunehmend mit maschinellen Lernverfahren, die sich die komplexen Daten in der Chirurgie zunutze machen. Die Einbindung von Systemen künstlicher Intelligenz in Operationssaal und Klinik hat jedoch erst begonnen.

Diskussion

Die translationale Erforschung künstlicher Intelligenz in der Chirurgie steht noch am Anfang, bietet aber ein großes Potenzial, die Behandlung der Patienten zu verbessern. Um die Einbindung intelligenter Systeme in die Klinik zu beschleunigen, ist die Schaffung interdisziplinärer Forschungsgruppen unter chirurgischer Leitung nötig.

Abstract

Background

Digital systems have increasingly become integrated into the modern operating room in the last few decades. This has brought about a massive change, especially in minimally invasive surgery.

Objective

The article provides an overview of the current technical innovations and the perspectives of digitalization and artificial intelligence (AI) in surgery.

Material and methods

The article is based on a literature search via PubMed and research work by the participating coauthors.

Results

Current research is increasingly looking at machine learning techniques that take advantage of the complex data in surgery; however, the integration of artificial intelligence systems into the operating room and clinical practice has only just begun.

Discussion

Translational research of artificial intelligence in surgery is still in its infancy but has great potential to improve patient care; however, to accelerate the incorporation of intelligent systems into the clinical practice, the creation of interdisciplinary research groups led by surgeons is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Berlin IDZ (2021) Aliado – kooperatives KI-System für die Krebstherapie. https://ux-design-awards.com/de/gewinner/aliado. Zugegriffen: 15. Nov. 2021

  2. Byrne MF, Chapados N, Soudan F et al (2019) Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut 68:94–100. https://doi.org/10.1136/gutjnl-2017-314547

    Article  PubMed  Google Scholar 

  3. Diana M, Noll E, Diemunsch P et al (2014) Enhanced-reality video fluorescence: a real-time assessment of intestinal viability. Ann Surg 259:700–707. https://doi.org/10.1097/SLA.0b013e31828d4ab3

    Article  PubMed  Google Scholar 

  4. Diana M, Soler L, Agnus V et al (2017) Prospective evaluation of precision multimodal gallbladder surgery navigation: virtual reality, near-infrared fluorescence, and X‑ray-based intraoperative cholangiography. Ann Surg 266:890–897. https://doi.org/10.1097/SLA.0000000000002400

    Article  PubMed  Google Scholar 

  5. Engelhardt S, De Simone R, Full PM et al (2018) Improving surgical training phantoms by Hyperrealism: deep unpaired image-to-image translation from real surgeries. arXiv:180603627 [cs] 11070:747–755. https://doi.org/10.1007/978-3-030-00928-1_84

    Book  Google Scholar 

  6. Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118. https://doi.org/10.1038/nature21056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goyal A (2018) New technologies for sentinel lymph node detection. Breast Care 13:349–353. https://doi.org/10.1159/000492436

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hagen NA, Kudenov MW (2013) Review of snapshot spectral imaging technologies. Opt Eng 52:90901. https://doi.org/10.1117/1.OE.52.9.090901

    Article  Google Scholar 

  9. Hashimoto DA, Rosman G, Rus D, Meireles OR (2018) Artificial intelligence in surgery: promises and perils. Ann Surg 268:70–76. https://doi.org/10.1097/SLA.0000000000002693

    Article  PubMed  Google Scholar 

  10. Hashimoto DA, Rosman G, Witkowski ER et al (2019) Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann Surg 270:414–421. https://doi.org/10.1097/SLA.0000000000003460

    Article  PubMed  Google Scholar 

  11. Heiliger C, Piecuch J, Frank A et al (2021) Laparoscopic intraarterial catheterization with selective ICG fluorescence imaging in colorectal surgery. Sci Rep 11:14753. https://doi.org/10.1038/s41598-021-94244-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hope TA, Calais J (2021) PSMA-targeted radiopharmaceutical therapy in patients with metastatic castration-resistant prostate cancer. Lancet 397:768–769. https://doi.org/10.1016/S0140-6736(21)00349-4

    Article  PubMed  Google Scholar 

  13. Kenngott HG, Apitz M, Wagner M et al (2017) Paradigm shift: cognitive surgery. Innov Surg Sci 2:139–143. https://doi.org/10.1515/iss-2017-0012

    Article  PubMed  PubMed Central  Google Scholar 

  14. Knieling F, Neufert C, Hartmann A et al (2017) Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N Engl J Med 376:1292–1294. https://doi.org/10.1056/NEJMc1612455

    Article  PubMed  Google Scholar 

  15. Komorowski M, Celi LA, Badawi O et al (2018) The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med 24:1716–1720. https://doi.org/10.1038/s41591-018-0213-5

    Article  CAS  PubMed  Google Scholar 

  16. Kudo S‑E, Ichimasa K, Villard B et al (2021) Artificial intelligence system to determine risk of T1 colorectal cancer metastasis to lymph node. Gastroenterology 160:1075–1084.e2. https://doi.org/10.1053/j.gastro.2020.09.027

    Article  CAS  PubMed  Google Scholar 

  17. Mai R‑Y, Lu H‑Z, Bai T et al (2020) Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in patients with hepatocellular carcinoma. Surgery 168:643–652. https://doi.org/10.1016/j.surg.2020.06.031

    Article  PubMed  Google Scholar 

  18. Maier-Hein L, Eisenmann M, Sarikaya D et al (2021) Surgical data science—from concepts toward clinical translation. arXiv:2011.02284 [cs, eess]

    Google Scholar 

  19. Maier-Hein L, Gockel I, Speidel S et al (2020) Intraoperative Bildgebung und Visualisierung. Onkologe. https://doi.org/10.1007/s00761-019-00695-4

    Article  Google Scholar 

  20. Murali A, Sen S, Kehoe B et al (2015) Learning by observation for surgical subtasks: multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms. 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, Seattle, S 1202–1209

    Google Scholar 

  21. Neuschler EI, Butler R, Young CA et al (2018) A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists. Radiology 287:398–412. https://doi.org/10.1148/radiol.2017172228

    Article  PubMed  Google Scholar 

  22. Que S‑J, Chen Q‑Y, Qing-Zhong et al (2019) Application of preoperative artificial neural network based on blood biomarkers and clinicopathological parameters for predicting long-term survival of patients with gastric cancer. World J Gastroenterol 25:6451–6464. https://doi.org/10.3748/wjg.v25.i43.6451

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rice TW, Lu M, Ishwaran H et al (2019) Precision surgical therapy for adenocarcinoma of the esophagus and esophagogastric junction. J Thorac Oncol 14:2164–2175. https://doi.org/10.1016/j.jtho.2019.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  24. Takahashi M, Takahashi M, Nishinari N et al (2017) Clinical evaluation of complete solo surgery with the „ViKY®“ robotic laparoscope manipulator. Surg Endosc 31:981–986. https://doi.org/10.1007/s00464-016-5058-8

    Article  PubMed  Google Scholar 

  25. Wagner M, Müller-Stich B‑P, Kisilenko A et al (2021) Comparative validation of machine learning algorithms for surgical workflow and skill analysis with the HeiChole benchmark. arXiv:2109.14956 [cs, eess]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Grimminger FACS FEBS.

Ethics declarations

Interessenkonflikt

P. Grimminger ist unter anderem für Intuitive Surgical, Medtronic, CMR Surgical und Medicaroid beratend tätig, sowie Proctor für Intuitive Surgical. M. Wagner, A. Schulze, S. Bodenstedt, L. Maier-Hein, S. Speidel, F. Nickel, F. Berlth und B.P. Müller-Stich geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

H. Lang, Mainz

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, M., Schulze, A., Bodenstedt, S. et al. Technische Innovationen und Blick in die Zukunft. Chirurg 93, 217–222 (2022). https://doi.org/10.1007/s00104-021-01569-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-021-01569-5

Schlüsselwörter

Keywords

Navigation