Skip to main content

Einfluss der Molekularpathologie auf die onkologische Chirurgie von Leber- und Gallengangstumoren

Influence of molecular pathology on oncological surgery of liver and bile duct tumors



Die Molekularpathologie dient zunehmend der Therapiesteuerung in der Onkologie. Etwa 25 % aller hepatozellulären Karzinome (HCCs) und 50 % der Cholangiokarzinome (CCAs) weisen bekannte krebsrelevante Mutationen auf, deren Einfluss auf die Behandlung dieser Tumoren noch nicht ausreichend verstanden ist.

Ziel der Arbeit

Die Evaluation der aktuellen Literatur über die molekularpathologischen Fortschritte beim HCC/CCA und deren möglicher Einfluss auf die onkologische Chirurgie.

Material und Methoden

Zunächst erfolgte eine Zusammenfassung der in PubMed und verfügbaren Literatur über die aktuell bekannten molekularen Biomarker beim HCC/CCA. Anhand dieser Daten wird der mögliche Einfluss dieser Biomarker auf die onkologische Chirurgie diskutiert.


Molekularpathologische Untersuchungen können zur Unterstützung der Tumortypisierung und Dignitätsbestimmung von HCCs/CCAs eingesetzt werden. Prädiktive molekulare Biomarker konnten sich in der regulären Diagnostik noch nicht etablieren, können aber zur erweiterten Therapieplanung eingesetzt werden.



Molecular pathology is increasingly being used to guide treatment in oncology. Approximately 25% of all hepatocellular carcinomas (HCC) and 50% of cholangiocarcinomas (CCA) present with known cancer-relevant mutations; however, the impact of the mutations on the treatment of these tumors is not yet sufficiently understood.


To evaluate the current literature on molecular pathological advances in HCC/CCA and the potential impact on oncological surgery.

Material and methods

A comprehensive search of the available literature on currently known molecular biomarkers in HCC/CCA was performed in PubMed and Following review, the potential impact of these biomarkers on oncological surgery was analyzed and is discussed.


Molecular pathological investigations can be used to support the classification of tumors and to determine the dignity of HCC/CCA. Predictive molecular biomarkers are not yet established in routine diagnostics but can be used to individualize advanced oncological treatment.

This is a preview of subscription content, access via your institution.

Abb. 1


  1. 1.

    Park SE, Noh JM, Kim YJ, Lee HS, Cho JH, Lim SW et al (2019) EGFR mutation is associated with short progression free survival in patients with stage III non-squamous cell lung cancer treated with concurrent chemoradiotherapy. Cancer Res Treat 51(2):493–501

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, Allen C et al (2017) The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015. JAMA Oncol 3(12):1683–1691

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S et al (2021) Hepatocellular carcinoma. Nat Rev Dis Primers 7(1):6

    PubMed  Article  Google Scholar 

  4. 4.

    Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375:1823–1833

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Nöpel-Dünnebacke S, Conradi L‑C, Reinacher-Schick A, Ghadimi M (2020) Therapeutic relevance of molecular markers in colorectal cancer. Onkologe 26:685–697

    Article  Google Scholar 

  6. 6.

    Duffy M, Harbeck N, Nap M, Molina R, Nicolini A, Senkus E et al (2017) Clinical use of biomarkers in breast cancer: updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer 75:284–298

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Pinyol R, Torrecilla S, Wang H, Montironi C, Piqué-Gili M, Torres-Martin M et al (2021) Molecular characterization of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J Hepatol.

    Article  PubMed  Google Scholar 

  8. 8.

    Llovet JM, Montal R, Sia D, Finn RS (2018) Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol 15(10):599–616

    PubMed  Article  Google Scholar 

  9. 9.

    Boyault S, Rickman DS, De Reyniès A, Balabaud C, Rebouissou S, Jeannot E et al (2007) Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45(1):42–52

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Lee J‑S, Heo J, Libbrecht L, Chu I‑S, Kaposi-Novak P, Calvisi DF et al (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12(4):410–416

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Toffanin S, Hoshida Y, Lachenmayer A, Villanueva A, Cabellos L, Minguez B et al (2011) MicroRNA-based classification of hepatocellular carcinoma and oncogenic role of miR-517a. Gastroenterology 140(5):1618–1628.e16

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    von Felden J, Villanueva A (2020) Role of molecular biomarkers in liver transplantation for hepatocellular carcinoma. Liver Transpl 26(6):823–831

    Article  Google Scholar 

  13. 13.

    Solinas A, Calvisi DF (2016) Programmed death ligand 1 expression in hepatocellular carcinoma: a prognostic marker and therapeutic target for liver cancer? Hepatology 64(6):1847–1849

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Li X‑S, Li J‑W, Li H, Jiang T (2020) Prognostic value of programmed cell death ligand 1 (PD-L1) for hepatocellular carcinoma: a meta-analysis. Biosci Rep 40(4):BSR20200459

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Heitzer E, Haque IS, Roberts CE, Speicher MR (2019) Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet 20(2):71–88

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    von Felden J, Garcia-Lezana T, Schulze K, Losic B, Villanueva A (2020) Liquid biopsy in the clinical management of hepatocellular carcinoma. Gut 69(11):2025–2034

    Article  CAS  Google Scholar 

  17. 17.

    Chen VL, Xu D, Wicha MS, Lok AS, Parikh ND (2020) Utility of liquid biopsy analysis in detection of hepatocellular carcinoma, determination of prognosis, and disease monitoring: a systematic review. Clin Gastroenterol Hepatol 18(13):2879–2902.e9

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Chen J, Parkin D, Chen Q, Lu J, Shen Q, Zhang B et al (2003) Screening for liver cancer: results of a randomised controlled trial in Qidong, China. J Med Screen 10(4):204–209

    PubMed  Article  Google Scholar 

  19. 19.

    European Association for the Study of the Liver (2018) EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 69(1):182–236

    Article  Google Scholar 

  20. 20.

    Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR et al (2018) AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 67(1):358–380

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Tzartzeva K, Obi J, Rich NE, Parikh ND, Marrero JA, Yopp A et al (2018) Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. Gastroenterology 154(6):1706–1718.e1

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Marrero JA, Feng Z, Wang Y, Nguyen MH, Befeler AS, Roberts LR et al (2009) α‑fetoprotein, des‑γ carboxyprothrombin, and lectin-bound α‑fetoprotein in early hepatocellular carcinoma. Gastroenterology 137(1):110–118

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM et al (2018) Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 68(2):723–750

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Pons F, Varela M, Llovet JM (2005) Staging systems in hepatocellular carcinoma. HPB 7(1):35–41

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Llovet JM, De Baere T, Kulik L, Haber PK, Greten TF, Meyer T et al (2021) Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 18(5):293–313

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Samuel M, Chow PK, Chan Shih-Yen E, Machin D, Soo KC (2009) Neoadjuvant and adjuvant therapy for surgical resection of hepatocellular carcinoma. Cochrane Database Syst Rev 1:Cd1199

    Google Scholar 

  27. 27.

    Lee JH, Lee JH, Lim YS, Yeon JE, Song TJ, Yu SJ et al (2015) Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology 148(7):1383–1391.e6

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Bruix J, Takayama T, Mazzaferro V, Chau GY, Yang J, Kudo M et al (2015) Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol 16(13):1344–1354

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Renner P, Da Silva T, Schnitzbauer AA, Verloh N, Schlitt HJ, Geissler EK (2021) Hepatocellular carcinoma progression during bridging before liver transplantation. BJS Open 5(2):zrab5

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Singal AG, Pillai A, Tiro J (2014) Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS Med 11(4):e1001624

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Lencioni R, Llovet JM, Han G, Tak WY, Yang J, Guglielmi A et al (2016) Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: the SPACE trial. J Hepatol 64(5):1090–1098

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Meyer T, Fox R, Ma YT, Ross PJ, James MW, Sturgess R et al (2017) Sorafenib in combination with transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma (TACE 2): a randomised placebo-controlled, double-blind, phase 3 trial. Lancet Gastroenterol Hepatol 2(8):565–575

    PubMed  Article  Google Scholar 

  33. 33.

    Kudo M, Han G, Finn RS, Poon RT, Blanc JF, Yan L et al (2014) Brivanib as adjuvant therapy to transarterial chemoembolization in patients with hepatocellular carcinoma: a randomized phase III trial. Hepatology 60(5):1697–1707

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Struecker B, Morguel H, Pascher A (2020) Cholangiokarzinome–aktuelle Therapiestandards. Onkologe 26(3):238–245

    Article  Google Scholar 

  35. 35.

    Banales JM, Marin JJ, Lamarca A, Rodrigues PM, Khan SA, Roberts LR et al (2020) Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 17(9):557–588

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ (2018) Cholangiocarcinoma—evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 15(2):95

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Patel AH, Harnois DM, Klee GG, LaRusso NF, Gores GJ (2000) The utility of CA 19‑9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am J Gastroenterol 95(1):204–207

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Qin XL, Wang ZR, Shi JS, Lu M, Wang L, He QR (2004) Utility of serum CA19‑9 in diagnosis of cholangiocarcinoma: in comparison with CEA. World J Gastroenterol 10(3):427–432

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Marrero JA (2014) Biomarkers in cholangiocarcinoma. Clin Liver Dis (Hoboken) 3(5):101–103

    Article  Google Scholar 

  40. 40.

    Macias RIR, Kornek M, Rodrigues PM, Paiva NA, Castro RE, Urban S et al (2019) Diagnostic and prognostic biomarkers in cholangiocarcinoma. Liver Int 39(Suppl 1):108–122

    PubMed  Article  Google Scholar 

  41. 41.

    Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C et al (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17(4):223–238

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Liang Z, Liu X, Zhang Q, Wang C, Zhao Y (2016) Diagnostic value of microRNAs as biomarkers for cholangiocarcinoma. Dig Liver Dis 48(10):1227–1232

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Zhou J, Liu Z, Yang S, Li X (2017) Identification of microRNAs as biomarkers for cholangiocarcinoma detection: a diagnostic meta-analysis. Clin Res Hepatol Gastroenterol 41(2):156–162

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Shigehara K, Yokomuro S, Ishibashi O, Mizuguchi Y, Arima Y, Kawahigashi Y et al (2011) Real-time PCR-based analysis of the human bile microRNAome identifies miR‑9 as a potential diagnostic biomarker for biliary tract cancer. PLoS One 6(8):e23584

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Al Ustwani O, Iancu D, Yacoub R, Iyer R (2012) Detection of circulating tumor cells in cancers of biliary origin. J Gastrointest Oncol 3(2):97–104

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Yang JD, Campion MB, Liu MC, Chaiteerakij R, Giama NH, Ahmed Mohammed H et al (2016) Circulating tumor cells are associated with poor overall survival in patients with cholangiocarcinoma. Hepatology 63(1):148–158

    PubMed  Article  Google Scholar 

  47. 47.

    Parsa N, Khashab MA (2019) The role of peroral cholangioscopy in evaluating indeterminate biliary strictures. Clin Endosc 52(6):556

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Voigtländer T, Gupta SK, Thum S, Fendrich J, Manns MP, Lankisch TO et al (2015) MicroRNAs in serum and bile of patients with primary sclerosing cholangitis and/or cholangiocarcinoma. PLoS ONE 10(10):e139305

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Wang LJ, He CC, Sui X, Cai MJ, Zhou CY, Ma JL et al (2015) MiR-21 promotes intrahepatic cholangiocarcinoma proliferation and growth in vitro and in vivo by targeting PTPN14 and PTEN. Oncotarget 6(8):5932–5946

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Forner A, Vidili G, Rengo M, Bujanda L, Ponz-Sarvisé M, Lamarca A (2019) Clinical presentation, diagnosis and staging of cholangiocarcinoma. Liver Int 39(Suppl 1):98–107

    PubMed  Article  Google Scholar 

  51. 51.

    Valle JW, Borbath I, Khan SA, Huguet F, Gruenberger T, Arnold D (2016) Biliary cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 27(Suppl 5):v28–v37

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, Kato M et al (2015) Genomic spectra of biliary tract cancer. Nat Genet 47(9):1003–1010

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Nepal C, O’Rourke CJ, Oliveira D, Taranta A, Shema S, Gautam P et al (2018) Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma. Hepatology 68(3):949–963

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Ruys AT, Groot Koerkamp B, Wiggers JK, Klümpen HJ, ten Kate FJ, van Gulik TM (2014) Prognostic biomarkers in patients with resected cholangiocarcinoma: a systematic review and meta-analysis. Ann Surg Oncol 21(2):487–500

    PubMed  Article  Google Scholar 

  55. 55.

    Liu CH, Huang Q, Jin ZY, Xie F, Zhu CL, Liu Z et al (2018) Circulating microRNA-21 as a prognostic, biological marker in cholangiocarcinoma. J Cancer Res Ther 14(1):220–225

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Darwish Murad S, Kim WR, Harnois DM, Douglas DD, Burton J, Kulik LM et al (2012) Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. Gastroenterology 143(1):88–98.e3 (quiz e14)

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Ethun CG, Lopez-Aguiar AG, Anderson DJ, Adams AB, Fields RC, Doyle MB et al (2018) Transplantation versus resection for hilar cholangiocarcinoma: an argument for shifting treatment paradigms for resectable disease. Ann Surg 267(5):797–805

    PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Frosio F, Mocchegiani F, Conte G, Bona ED, Vecchi A, Nicolini D et al (2019) Neoadjuvant therapy in the treatment of hilar cholangiocarcinoma: review of the literature. World J Gastrointest Surg 11(6):279–286

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Zhang XF, Beal EW, Bagante F, Chakedis J, Weiss M, Popescu I et al (2018) Early versus late recurrence of intrahepatic cholangiocarcinoma after resection with curative intent. Br J Surg 105(7):848–856

    PubMed  Article  Google Scholar 

  60. 60.

    Zhang XF, Beal EW, Chakedis J, Chen Q, Lv Y, Ethun CG et al (2018) Defining early recurrence of hilar cholangiocarcinoma after curative-intent surgery: a multi-institutional study from the US Extrahepatic Biliary Malignancy Consortium. World J Surg 42(9):2919–2929

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Miura JT, Johnston FM, Tsai S, George B, Thomas J, Eastwood D et al (2015) Chemotherapy for surgically resected intrahepatic cholangiocarcinoma. Ann Surg Oncol 22(11):3716–3723

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Malka D, Edeline J (2019) Adjuvant capecitabine in biliary tract cancer: a standard option? Lancet Oncol 20(5):606–608

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Shroff RT, Kennedy EB, Bachini M, Bekaii-Saab T, Crane C, Edeline J et al (2019) Adjuvant therapy for resected biliary tract cancer: ASCO clinical practice guideline. J Clin Oncol 37(12):1015–1027

    PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Stein A, Arnold D, Bridgewater J, Goldstein D, Jensen LH, Klümpen H‑J et al (2015) Adjuvant chemotherapy with gemcitabine and cisplatin compared to observation after curative intent resection of cholangiocarcinoma and muscle invasive gallbladder carcinoma (ACTICCA‑1 trial)-a randomized, multidisciplinary, multinational phase III trial. BMC Cancer 15(1):564

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. 65.

    Ben-Josef E, Guthrie KA, El-Khoueiry AB, Corless CL, Zalupski MM, Lowy AM et al (2015) SWOG S0809: a phase II intergroup trial of adjuvant capecitabine and gemcitabine followed by radiotherapy and concurrent capecitabine in extrahepatic cholangiocarcinoma and gallbladder carcinoma. J Clin Oncol 33(24):2617–2622

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Jia AY, Wu JX, Zhao YT, Li YX, Wang Z, Rong WQ et al (2015) Intensity-modulated radiotherapy following null-margin resection is associated with improved survival in the treatment of intrahepatic cholangiocarcinoma. J Gastrointest Oncol 6(2):126–133

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Plentz RR, Malek NP (2016) Systemic therapy of cholangiocarcinoma. Visc Med 32(6):427–430

    PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Lowery MA, Goff LW, Keenan BP, Jordan E, Wang R, Bocobo AG et al (2019) Second-line chemotherapy in advanced biliary cancers: a retrospective, multicenter analysis of outcomes. Cancer 125(24):4426–4434

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Abou-Alfa G, Mercade TM, Javle M, Kelley R, Lubner S, Adeva J et al (2019) ClarIDHy: a global, phase III, randomized, double-blind study of ivosidenib (IVO) vs placebo in patients with advanced cholangiocarcinoma (CC) with an isocitrate dehydrogenase 1 (IDH1) mutation. Ann Oncol 30:v872–v873

    Article  Google Scholar 

  70. 70.

    Lowery MA, Abou-Alfa GK, Burris H (2017) Phase 1 study of AG-120, an IDH1 mutant enzyme inhibitor: results from the cholangiocarcinoma dose escalation and expansion cohorts. J Clin Oncol 132(2):3

    Google Scholar 

  71. 71.

    Javle M, Lowery M, Shroff RT, Weiss KH, Springfeld C, Borad MJ et al (2018) Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J Clin Oncol 36(3):276–282

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Yamamoto K, Ueno T, Kawaoka T, Hazama S, Fukui M, Suehiro Y et al (2005) MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer. Anticancer Res 25(5):3575–3579

    CAS  PubMed  Google Scholar 

  73. 73.

    Guo Y, Feng K, Liu Y, Wu Z, Dai H, Yang Q et al (2018) Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin Cancer Res 24(6):1277–1286

    CAS  PubMed  Article  Google Scholar 

Download references


Die Autoren danken Herrn Bernhard-Christian Münch für die Hilfe beim Erstellen des Manuskriptes.

Author information



Corresponding author

Correspondence to Andreas Pascher.

Ethics declarations


M.A. Juratli, B. Struecker, S. Katou, M. H. Morguel und A. Pascher geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information


QR-Code scannen & Beitrag online lesen


I. Gockel, Leipzig

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Juratli, M.A., Struecker, B., Katou, S. et al. Einfluss der Molekularpathologie auf die onkologische Chirurgie von Leber- und Gallengangstumoren. Chirurg (2021).

Download citation


  • Personalisierte Medizin
  • Hepatozelluläres Karzinom
  • Cholangiokarzinome
  • Onkologische Chirurgie
  • Flüssigbiopsie


  • Personalized medicine
  • Hepatocellular carcinoma
  • Cholangiocarcinoma
  • Surgical oncology
  • Liquid biopsy