Skip to main content
Log in

Zystische Pankreastumoren: Diagnostik und neue Biomarker

Cystic pancreatic tumors: diagnostics and new biomarkers

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Das duktale Adenokarzinom des Pankreas (PDAC) wird bei der krebsbedingten Sterblichkeit in Zukunft noch weiter zunehmen. Die einzige kurative Therapie ist die radikale Resektion, wobei selbst bei kleinen Karzinomen bereits eine (Mikro‑)Metastasierung vorliegt, was die hohe Rate an Frührezidiven bei dieser Erkrankung erklärt. Dementsprechend wichtig ist die Detektion prämaligner Veränderungen. Im Wesentlichen entsteht das PDAC aus 3 Vorläuferläsionen, den pankreatischen intraepithelialen Läsionen (PanIN), den intraduktalen papillär-muzinösen Neoplasien (IPMN) und den muzinös-zystischen Neoplasien (MCN). Letztere bilden zusammen mit der serös-zystischen Neoplasie (SCN) und der solide pseudopapillären Neoplasie (SPN) die häufigsten zystischen Neoplasien im Pankreas. Demgegenüber stehen nichtneoplastische Läsionen. Schließt man die nichtneoplastischen Pseudozysten mit ein, erfassen die genannten Läsionen mehr als 90 % pankreatischer Zysten. Bei IPMN muss aufgrund des obligaten Ganganschlusses zwischen Haupt- und Seitengang-IPMN unterschieden werden. Diese Unterscheidung ist wichtig aufgrund der unterschiedlichen Entartungstendenz. Während Hauptgang-IPMN und MCN ein relativ hohes malignes Transformationsrisiko haben, zeigen Seitengang-IPMN einen variableren Verlauf. Die Differenzialdiagnose zystischer Pankreasläsionen ist daher essenziell, allerdings mit konventioneller Bildgebung oft sehr schwierig. Wünschenswert wäre es daher, anhand der molekularen Unterschiede zystischer Pankreasläsionen neue Biomarker und Diagnosetools zu entwickeln. Ziel ist es einerseits die prämalignen zystischen von strikt benignen zystischen Läsionen sicher zu unterscheiden und andererseits die Transformation zum Malignom rechtzeitig erkennen zu können. Die vorliegende Arbeit versucht einen Überblick über die molekularen Grundlagen zystischer Pankreasläsionen als Basis für eine verbesserte Diagnostik und die Entwicklung neuer Biomarker zu geben.

Abstract

Mortality due to pancreatic ductal adenocarcinoma (PDAC) will increase in the near future. The only curative treatment for PDAC is radical resection; however, even small carcinomas exhibit micrometastases leading to early relapse. Accordingly, detection of premalignant precursor lesions is important. In essence, PDAC develops from three precursor lesions: pancreatic intraepithelial lesions (PanIN), intraductal papillary-mucinous neoplasia (IPMN) and mucinous-cystic neoplasia (MCN). Together with serous cystic neoplasia (SCN) and solid pseudopapillary neoplasia (SPN), these cystic lesions constitute the most common cystic neoplasms in the pancreas. In the case of IPMN, main and branch duct IPMN have to be differentiated because of a markedly different malignancy potential. While main duct IPMN and MCN have a high malignancy transformation rate, branch duct IPMNs are more variable with respect to malignant transformation. This shows that differential diagnosis of cystic lesions is important; however, this is often very difficult to accomplish using conventional imaging. Novel biomarkers and diagnostic tools based on the molecular differences of cystic pancreatic lesions could be helpful to differentiate these lesions and facilitate early diagnosis. The aim is to distinguish the premalignant cysts from strictly benign cystic lesions and a timely detection of malignant transformation. This article provides an overview on the molecular characteristics of cystic pancreatic lesions as a basis for improved diagnostics and the development of new biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Anil G, Zhang J, Al Hamar NE et al (2017) Solid pseudopapillary neoplasm of the pancreas: CT imaging features and radiologic-pathologic correlation. Diagn Interv Radiol 23:94–99

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bassi C, Salvia R, Molinari E et al (2003) Management of 100 consecutive cases of pancreatic serous cystadenoma: wait for symptoms and see at imaging or vice versa? World J Surg 27:319–323

    Article  PubMed  Google Scholar 

  3. Berger AW, Schwerdel D, Costa IG et al (2016) Detection of hot-spot mutations in circulating cell-free DNA from patients with Intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology 151:267–270

    Article  CAS  PubMed  Google Scholar 

  4. Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224ra224

    Article  Google Scholar 

  5. Cai YQ, Xie SM, Ran X et al (2014) Solid pseudopapillary tumor of the pancreas in male patients: report of 16 cases. World J Gastroenterol 20:6939–6945

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen R, Pan S, Cooke K et al (2007) Comparison of pancreas juice proteins from cancer versus pancreatitis using quantitative proteomic analysis. Pancreas 34:70–79

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cizginer S, Turner BG, Bilge AR et al (2011) Cyst fluid carcinoembryonic antigen is an accurate diagnostic marker of pancreatic mucinous cysts. Pancreas 40:1024–1028

    Article  CAS  PubMed  Google Scholar 

  8. Cuoghi A, Farina A, Z’graggen K et al (2011) Role of proteomics to differentiate between benign and potentially malignant pancreatic cysts. J Proteome Res 10:2664–2670

    Article  CAS  PubMed  Google Scholar 

  9. De Jong K, Bruno MJ, Fockens P (2012) Epidemiology, diagnosis, and management of cystic lesions of the pancreas. Gastroenterol Res Pract 2012:147465

    PubMed  Google Scholar 

  10. De Jong K, Nio CY, Mearadji B et al (2012) Disappointing interobserver agreement among radiologists for a classifying diagnosis of pancreatic cysts using magnetic resonance imaging. Pancreas 41:278–282

    Article  PubMed  Google Scholar 

  11. Ethun CG, Postlewait LM, Mcinnis MR et al (2017) The diagnosis of pancreatic mucinous cystic neoplasm and associated adenocarcinoma in males: an eight-institution study of 349 patients over 15 years. J Surg Oncol 115:784–787

    Article  PubMed  Google Scholar 

  12. Farrell JJ, Fernandez-Del Castillo C (2013) Pancreatic cystic neoplasms: management and unanswered questions. Gastroenterology 144:1303–1315

    Article  PubMed  Google Scholar 

  13. Farrell JJ, Toste P, Wu N et al (2013) Endoscopically acquired pancreatic cyst fluid microRNA 21 and 221 are associated with invasive cancer. Am J Gastroenterol 108:1352–1359

    Article  CAS  PubMed  Google Scholar 

  14. Furukawa T, Kuboki Y, Tanji E et al (2011) Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep 1:161

    Article  PubMed  PubMed Central  Google Scholar 

  15. Genevay M, Mino-Kenudson M, Yaeger K et al (2011) Cytology adds value to imaging studies for risk assessment of malignancy in pancreatic mucinous cysts. Ann Surg 254:977–983

    Article  PubMed  Google Scholar 

  16. Griffin JF, Page AJ, Samaha GJ et al (2017) Patients with a resected pancreatic mucinous cystic neoplasm have a better prognosis than patients with an intraductal papillary mucinous neoplasm: A large single institution series. Pancreatology 17:490–496

    Article  PubMed  Google Scholar 

  17. Hartwig W, Strobel O, Hinz U et al (2013) CA19-9 in potentially resectable pancreatic cancer: perspective to adjust surgical and perioperative therapy. Ann Surg Oncol 20:2188–2196

    Article  PubMed  Google Scholar 

  18. Ke E, Patel BB, Liu T et al (2009) Proteomic analyses of pancreatic cyst fluids. Pancreas 38:e33–e42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim Y, Kang M, Han D et al (2016) Biomarker development for Intraductal papillary mucinous neoplasms using multiple reaction monitoring mass spectrometry. J Proteome Res 15:100–113

    Article  CAS  PubMed  Google Scholar 

  20. Le Baleur Y, Couvelard A, Vullierme MP et al (2011) Mucinous cystic neoplasms of the pancreas: definition of preoperative imaging criteria for high-risk lesions. Pancreatology 11:495–499

    Article  PubMed  Google Scholar 

  21. Le Borgne J, De Calan L, Partensky C (1999) Cystadenomas and cystadenocarcinomas of the pancreas: a multiinstitutional retrospective study of 398 cases. French Surgical Association. Ann Surg 230:152–161

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee JH, Kim Y, Choi JW et al (2016) KRAS, GNAS, and RNF43 mutations in intraductal papillary mucinous neoplasm of the pancreas: a meta-analysis. Springerplus 5:1172

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lv S, Gao J, Zhu F et al (2011) Transthyretin, identified by proteomics, is overabundant in pancreatic juice from pancreatic carcinoma and originates from pancreatic islets. Diagn Cytopathol 39:875–881

    Article  PubMed  Google Scholar 

  24. Masica DL, Dal Molin M, Wolfgang CL et al (2017) A novel approach for selecting combination clinical markers of pathology applied to a large retrospective cohort of surgically resected pancreatic cysts. J Am Med Inform Assoc 24:145–152

    Article  PubMed  Google Scholar 

  25. Matthaei H, Wylie D, Lloyd MB et al (2012) miRNA biomarkers in cyst fluid augment the diagnosis and management of pancreatic cysts. Clin Cancer Res 18:4713–4724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meyer J, Fleig W, Pletz M et al (2012) Lose-Blatt-Sammlung „Rationelle Diagnostik und Therapie in der Inneren Medizin“. Loseblattsammlung.

    Google Scholar 

  27. Moris M, Raimondo M, Woodward TA et al (2016) Diagnostic accuracy of endoscopic ultrasound-guided fine-needle aspiration cytology, carcinoembryonic antigen, and amylase in intraductal papillary mucinous neoplasm. Pancreas 45:870–875

    Article  CAS  PubMed  Google Scholar 

  28. Mukewar S, De Pretis N, Aryal-Khanal A et al (2016) Fukuoka criteria accurately predict risk for adverse outcomes during follow-up of pancreatic cysts presumed to be intraductal papillary mucinous neoplasms. Gut. doi:10.1136/gutjnl-2016-311615

    PubMed  Google Scholar 

  29. Murtaza M, Dawson SJ, Tsui DW et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108–112

    Article  CAS  PubMed  Google Scholar 

  30. Ngamruengphong S, Bartel MJ, Raimondo M (2013) Cyst carcinoembryonic antigen in differentiating pancreatic cysts: a meta-analysis. Dig Liver Dis 45:920–926

    Article  CAS  PubMed  Google Scholar 

  31. Notta F, Chan-Seng-Yue M, Lemire M et al (2016) A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 538:378–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pan S, Brentnall TA, Chen R (2015) Proteomics analysis of bodily fluids in pancreatic cancer. Proteomics 15:2705–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pitman MB, Genevay M, Yaeger K et al (2010) High-grade atypical epithelial cells in pancreatic mucinous cysts are a more accurate predictor of malignancy than „positive“ cytology. Cancer Cytopathol 118:434–440

    Article  PubMed  Google Scholar 

  34. Quante AS, Ming C, Rottmann M et al (2016) Projections of cancer incidence and cancer-related deaths in Germany by 2020 and 2030. Cancer Med 5:2649–2656

    Article  PubMed  PubMed Central  Google Scholar 

  35. Scheiman JM, Hwang JH, Moayyedi P (2015) American gastroenterological association technical review on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology 148:824–848.e22

    Article  PubMed  Google Scholar 

  36. Shami VM, Sundaram V, Stelow EB et al (2007) The level of carcinoembryonic antigen and the presence of mucin as predictors of cystic pancreatic mucinous neoplasia. Pancreas 34:466–469

    Article  CAS  PubMed  Google Scholar 

  37. Springer S, Wang Y, Dal Molin M et al (2015) A combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology 149:1501–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun Y, Zhou F, Liu F et al (2017) Discrimination of serous cystadenoma from mucinous cystadenoma in the pancreas with contrast-enhanced ultrasonography: a prospective study in 61 patients. Onco Targets Ther 10:1285–1294

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tanaka M, Fernandez-Del Castillo C, Adsay V et al (2012) International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology 12:183–197

    Article  PubMed  Google Scholar 

  40. Utomo WK, Janmaat VT, Verhaar AP et al (2016) DNA integrity as biomarker in pancreatic cyst fluid. Am J Cancer Res 6:1837–1841

    PubMed  PubMed Central  Google Scholar 

  41. Utomo WK, Looijenga LH, Bruno MJ et al (2016) A microRNA panel in pancreatic cyst fluid for the risk stratification of pancreatic cysts in a prospective cohort. Mol Ther Nucleic Acids 5:e350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Valsangkar NP, Morales-Oyarvide V, Thayer SP et al (2012) 851 resected cystic tumors of the pancreas: a 33-year experience at the Massachusetts General Hospital. Surgery 152:S4–S12

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wu J, Matthaei H, Maitra A et al (2011) Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med 3:92ra66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamao K, Yanagisawa A, Takahashi K et al (2011) Clinicopathological features and prognosis of mucinous cystic neoplasm with ovarian-type stroma: a multi-institutional study of the Japan pancreas society. Pancreas 40:67–71

    Article  CAS  PubMed  Google Scholar 

  45. Zhong N, Zhang L, Takahashi N et al (2012) Histologic and imaging features of mural nodules in mucinous pancreatic cysts. Clin Gastroenterol Hepatol 10:192–198.e2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Seufferlein or A. Kleger.

Ethics declarations

Interessenkonflikt

A. W. Berger, T. Seufferlein und A. Kleger geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, A.W., Seufferlein, T. & Kleger, A. Zystische Pankreastumoren: Diagnostik und neue Biomarker. Chirurg 88, 905–912 (2017). https://doi.org/10.1007/s00104-017-0493-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-017-0493-1

Schlüsselwörter

Keywords

Navigation