Advertisement

Der Chirurg

, Volume 88, Issue 2, pp 95–104 | Cite as

Alterstraumatologie

Multimodale Delirprävention und Verwendung von Augmentationstechniken
  • D. Wähnert
  • A. Roos
  • J. Glasbrenner
  • K. Ilting-Reuke
  • P. Ohrmann
  • G. Hempel
  • T. Duning
  • N. Roeder
  • M. J. RaschkeEmail author
Leitthema

Zusammenfassung

Laut aktueller Datenlage sind unfallchirurgische Patienten ab einem Alter von 65 Jahren im Rahmen der stationären Behandlung in 20–80 % vom Krankheitsbild Delir betroffen. Die medizinischen Folgen sind oftmals dramatisch und beinhalten eine bis zu 20-fach erhöhte Letalität. Gleichzeitig entsteht ein erheblicher ökonomischer Aufwand.

Am Universitätsklinikum Münster wurde ein multimodales und interdisziplinäres Konzept zu Delirprävention und -management entwickelt: Alle Patienten über 65 Jahre werden von einem Delirpräventionsteam gescreent und bei bestehendem Delirrisiko durch die Mitarbeiter des Teams betreut. Zudem wurde ein interdisziplinäres Management beim Auftreten deliranter Symptome entwickelt. Im Rahmen von Studien konnte die Delirrate durch diese multimodalen Konzepte deutlich gesenkt und somit die Qualität der medizinischen Versorgung erhöht werden.

Die eingeschränkte Knochenqualität sowie einliegende Implantate erschweren zusätzlich das operative Vorgehen bei Frakturen im hohen Alter. Verhindert werden müssen insbesondere ein Ausbrechen des verwendeten Implantats sowie ein sekundärer Repositionsverlust nach Osteosynthese. Durch das Ummanteln der Implantate mit Knochenzement kann die Kontaktfläche zwischen Knochen und Implantat vergrößert und somit die Stabilität verbessert werden. Je nach Lokalisation der Fraktur kann eine zusätzliche intraoperative 3‑D-Bildgebung erforderlich sein.

In biomechanischen Untersuchungen konnten wir auch für die osteoporotische, distale Femurfraktur eine Überlegenheit der Osteosynthese mit Zementaugmentation nachweisen.

Die Implantataugmentation mittels Knochenzement hilft Komplikationen bei Frakturen im hohen Alter zu verhindern, erfordert jedoch besondere Implantate und technische Fertigkeiten sowie die Beachtung einiger Sicherheitsaspekte.

Schlüsselwörter

Demenz Delir Osteoporotische Fraktur Knochen Alter 

Traumatology in the elderly

Multimodal prevention of delirium and use of augmentation techniques

Abstract

Recent data show that 20–80% of surgery patients are affected by delirium during inpatient clinical treatment. The medical consequences are often dramatic and include a 20 times higher mortality and treatment expenses of the medical unit increase considerably. At the University Hospital of Münster a multimodal and interdisciplinary concept for prevention and management of delirium was developed: all patients older than 65 years admitted for surgery are screened by a specialized team for the risk of developing delirium and treated by members of the team if there is a risk of delirium. Studies proved that by this multimodal approach the incidence of delirium was lowered and therefore the quality of medical care improved.

When surgical treatment of fractures in the elderly is required, limited bone quality as well as pre-existing implants can complicate the procedure. Secondary loss of reduction after osteosynthesis and avulsion of the implant in particular must be prevented. Augmentation of the osteosynthetic implant with bone cement can increase the bone-implant interface and therefore stability can be improved. Additional intraoperative 3D imaging can be necessary depending on the localization of the fracture. In biomechanical studies we could prove greater stability in the osteosynthesis of osteoporotic fractures of the distal femur when using additional bone cement; therefore, the use of bone cement is an important tool, which helps to prevent complications in the surgical treatment of fractures in the elderly. Nevertheless, special implants and technical skills are required and some safety aspects should be considered.

Keywords

Delirium Osteoporotic fracture Elderly Bone Dementia 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

D. Wähnert, A. Roos, J. Glasbrenner, K. Ilting-Reuke, P. Ohrmann, G. Hempel, T. Duning, N. Roeder und M.J. Raschke geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Weyerer S, Robert Koch Institut, Statistisches Bundesamt (2005) Heft 28: AltersdemenzGoogle Scholar
  2. 2.
    Hajek A, Brettschneider C, Lühmann D, Eisele M, Mamone S, Wiese B et al (2016) Effect of visual impairment on physical and cognitive function in old age: findings of a population-based prospective cohort study in Germany. J Am Geriatr Soc. doi: 10.1111/jgs.14458 PubMedGoogle Scholar
  3. 3.
    Wolfsgruber S, Kleineidam L, Wagner M, Mösch E, Bickel H, Lühmann D et al (2016) Differential risk of incident alzheimer’s disease dementia in stable versus unstable patterns of subjective cognitive decline. J Alzheimers Dis 54(3):1135–1146. doi: 10.3233/JAD-160407 CrossRefPubMedGoogle Scholar
  4. 4.
    Bickel H (2005) Epidemiologie und Gesundheitsökonomie. In: Wallesch CW, Förstl H (Hrsg) Demenzen. Referenzreihe Neurologie. Thieme, Stuttgart, S 1–15Google Scholar
  5. 5.
    Fong TG, Davis D, Growdon ME, Albuquerque A, Inouye SK (2015) The interface between delirium and dementia in elderly adults. Lancet Neurol 14(8):823–832. doi: 10.1016/S1474-4422(15)00101-5 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gleason LJ, Schmitt EM, Kosar CM, Tabloski P, Saczynski JS, Robinson T et al (2015) Effect of delirium and other major complications on outcomes after elective surgery in older adults. JAMA Surg 150(12):1134–1140. doi: 10.1001/jamasurg.2015.2606 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kratz T, Diefenbacher A (2016) Acute and long-term cognitive consequences of treatment on intensive care units. Nervenarzt 87(3):246–252. doi: 10.1007/s00115-016-0078-0 CrossRefPubMedGoogle Scholar
  8. 8.
    Davis DHJ, Muniz Terrera G, Keage H, Rahkonen T, Oinas M, Matthews FE et al (2012) Delirium is a strong risk factor for dementia in the oldest-old: a population-based cohort study. Brain 135(9):2809–2816. doi: 10.1093/brain/aws190 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Weinrebe W, Johannsdottir E, Karaman M, Füsgen I (2016) What does delirium cost? An economic evaluation of hyperactive delirium. Z Gerontol Geriatr 49(1):52–58. doi: 10.1007/s00391-015-0871-6 CrossRefPubMedGoogle Scholar
  10. 10.
    Kratz T, Heinrich M, Diefenbacher A (2015) Preventing postoperative delirium. Dtsch Arztebl Int 112(17):289–296. doi: 10.3238/arztebl.2015.0289 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Raschke MJ, Stange R, Kosters C (2012) Treatment of periprosthetic and peri-implant fractures: modern plate osteosynthesis procedures. Unfallchirurg 115:1009–1021CrossRefPubMedGoogle Scholar
  12. 12.
    Wahnert D, Schliemann B, Raschke MJ et al (2014) Treatment of periprosthetic fractures: new concepts in operative treatment. Orthopäde 43:306–313CrossRefPubMedGoogle Scholar
  13. 13.
    Erhart S, Zegg M, Kralinger F et al (2015) Fast and easy preoperative estimation of cancellous bone mineral density in patients with proximal femur fractures. Arch Orthop Trauma Surg 135:1683–1689CrossRefPubMedGoogle Scholar
  14. 14.
    Krappinger D, Bizzotto N, Riedmann S et al (2011) Predicting failure after surgical fixation of proximal humerus fractures. Injury 42:1283–1288CrossRefPubMedGoogle Scholar
  15. 15.
    Kammerlander C, Neuerburg C, Verlaan JJ et al (2016) The use of augmentation techniques in osteoporotic fracture fixation. Injury 47(Suppl 2):S36–S43CrossRefPubMedGoogle Scholar
  16. 16.
    Windolf M (2015) Biomechanics of implant augmentation. Unfallchirurg 118:765–771CrossRefPubMedGoogle Scholar
  17. 17.
    Kammerlander C, Doshi H, Gebhard F et al (2014) Long-term results of the augmented PFNA: a prospective multicenter trial. Arch Orthop Trauma Surg 134:343–349CrossRefPubMedGoogle Scholar
  18. 18.
    Kammerlander C, Gebhard F, Meier C et al (2011) Standardised cement augmentation of the PFNA using a perforated blade: A new technique and preliminary clinical results. A prospective multicentre trial. Injury 42:1484–1490CrossRefPubMedGoogle Scholar
  19. 19.
    Roderer G, Scola A, Schmolz W et al (2013) Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures. Injury 44:1327–1332CrossRefPubMedGoogle Scholar
  20. 20.
    Scola A, Gebhard F, Roderer G (2015) Augmentation technique on the proximal humerus. Unfallchirurg 118:749–754CrossRefPubMedGoogle Scholar
  21. 21.
    Grüneweller N, Raschke MJ, Zderic I et al (2016) Biomechanical comparison of augmented versus non-augmented sacroiliac screws in a novel hemi-pelvis test model. J Orthop Res. doi: 10.1002/jor.23401 Google Scholar
  22. 22.
    Gruneweller N, Wahnert D, Raschke MJ et al (2015) Implant augmentation in pelvic surgery. Options and technique. Unfallchirurg 118:831–837CrossRefPubMedGoogle Scholar
  23. 23.
    Wahnert D, Raschke MJ, Fuchs T (2013) Cement augmentation of the navigated iliosacral screw in the treatment of insufficiency fractures of the sacrum: a new method using modified implants. Int Orthop 37:1147–1150CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Blazejak M, Hofmann-Fliri L, Buchler L et al (2013) In vitro temperature evaluation during cement augmentation of proximal humerus plate screw tips. Injury 44:1321–1326CrossRefPubMedGoogle Scholar
  25. 25.
    Boner V, Kuhn P, Mendel T et al (2009) Temperature evaluation during PMMA screw augmentation in osteoporotic bone – an in vitro study about the risk of thermal necrosis in human femoral heads. J Biomed Mater Res B Appl Biomater 90:842–848CrossRefPubMedGoogle Scholar
  26. 26.
    Fliri L, Lenz M, Boger A et al (2012) Ex vivo evaluation of the polymerization temperatures during cement augmentation of proximal femoral nail antirotation blades. J Trauma Acute Care Surg 72:1098–1101CrossRefPubMedGoogle Scholar
  27. 27.
    Culemann U, Oestern HJ, Pohlemann T (2014) Current treatment of pelvic ring fractures. Unfallchirurg 117:145–141CrossRefPubMedGoogle Scholar
  28. 28.
    Daurka JS, Pastides PS, Lewis A et al (2014) Acetabular fractures in patients aged >55 years: a systematic review of the literature. Bone Joint J 96-B:157–163CrossRefPubMedGoogle Scholar
  29. 29.
    Fuchs T, Rottbeck U, Hofbauer V et al (2011) Pelvic ring fractures in the elderly. Underestimated osteoporotic fracture. Unfallchirurg 114:663–670CrossRefPubMedGoogle Scholar
  30. 30.
    Lyders EM, Whitlow CT, Baker MD et al (2010) Imaging and treatment of sacral insufficiency fractures. AJNR Am J Neuroradiol 31:201–210CrossRefPubMedGoogle Scholar
  31. 31.
    Mears SC, Berry DJ (2011) Outcomes of displaced and nondisplaced pelvic and sacral fractures in elderly adults. J Am Geriatr Soc 59:1309–1312CrossRefPubMedGoogle Scholar
  32. 32.
    Morris RO, Sonibare A, Green DJ et al (2000) Closed pelvic fractures: characteristics and outcomes in older patients admitted to medical and geriatric wards. Postgrad Med J 76:646–650CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    D’Elia G, Roselli G, Cavalli L et al (2010) Severe osteoporosis: diagnosis of non-hip non-vertebral (NHNV) fractures. Clin Cases Miner Bone Metab 7:85–90PubMedPubMedCentralGoogle Scholar
  34. 34.
    Warriner AH, Patkar NM, Curtis JR et al (2011) Which fractures are most attributable to osteoporosis? J Clin Epidemiol 64:46–53CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gupta AK, Harris JD, Erickson BJ et al (2015) Surgical management of complex proximal humerus fractures-a systematic review of 92 studies including 4500 patients. J Orthop Trauma 29:54–59CrossRefPubMedGoogle Scholar
  36. 36.
    Brunner F, Sommer C, Bahrs C et al (2009) Open reduction and internal fixation of proximal humerus fractures using a proximal humeral locked plate: a prospective multicenter analysis. J Orthop Trauma 23:163–172CrossRefPubMedGoogle Scholar
  37. 37.
    Konigshausen M, Kubler L, Godry H et al (2012) Clinical outcome and complications using a polyaxial locking plate in the treatment of displaced proximal humerus fractures. A reliable system? Injury 43:223–231CrossRefPubMedGoogle Scholar
  38. 38.
    Schliemann B, Siemoneit J, Theisen C et al (2012) Complex fractures of the proximal humerus in the elderly – outcome and complications after locking plate fixation. Musculoskelet Surg 96(Suppl 1):S3–S11CrossRefPubMedGoogle Scholar
  39. 39.
    Sproul RC, Iyengar JJ, Devcic Z et al (2011) A systematic review of locking plate fixation of proximal humerus fractures. Injury 42:408–413CrossRefPubMedGoogle Scholar
  40. 40.
    Gardner MJ, Weil Y, Barker JU et al (2007) The importance of medial support in locked plating of proximal humerus fractures. J Orthop Trauma 21:185–191CrossRefPubMedGoogle Scholar
  41. 41.
    Krappinger D, Roth T, Gschwentner M et al (2012) Preoperative assessment of the cancellous bone mineral density of the proximal humerus using CT data. Skeletal Radiol 41:299–304CrossRefPubMedGoogle Scholar
  42. 42.
    Schliemann B, Wahnert D, Theisen C et al (2015) How to enhance the stability of locking plate fixation of proximal humerus fractures? An overview of current biomechanical and clinical data. Injury 46:1207–1214CrossRefPubMedGoogle Scholar
  43. 43.
    Schliemann B, Seifert R, Rosslenbroich SB et al (2015) Screw augmentation reduces motion at the bone-implant interface: a biomechanical study of locking plate fixation of proximal humeral fractures. J Shoulder Elbow Surg 24:1968–1973CrossRefPubMedGoogle Scholar
  44. 44.
    Grass R, Biewener A, Rammelt S et al (2002) Retrograde locking nail osteosynthesis of distal femoral fractures with the distal femoral nail (DFN). Unfallchirurg 105:298–314CrossRefPubMedGoogle Scholar
  45. 45.
    Rosen AL, Strauss E (2004) Primary total knee arthroplasty for complex distal femur fractures in elderly patients. Clin Orthop Relat Res 425:101–105CrossRefGoogle Scholar
  46. 46.
    Nieves JW, Bilezikian JP, Lane JM et al (2010) Fragility fractures of the hip and femur: incidence and patient characteristics. Osteoporos Int 21:399–408CrossRefPubMedGoogle Scholar
  47. 47.
    Hou Z, Bowen TR, Irgit K et al (2012) Locked plating of periprosthetic femur fractures above total knee arthroplasty. J Orthop Trauma 26:427–432CrossRefPubMedGoogle Scholar
  48. 48.
    Vallier HA, Hennessey TA, Sontich JK et al (2006) Failure of LCP condylar plate fixation in the distal part of the femur. A report of six cases. J Bone Joint Surg Am 88:846–853PubMedGoogle Scholar
  49. 49.
    Wahnert D, Lange JH, Schulze M et al (2013) The potential of implant augmentation in the treatment of osteoporotic distal femur fractures: a biomechanical study. Injury 44:808–812CrossRefPubMedGoogle Scholar
  50. 50.
    Wahnert D, Lange JH, Schulze M et al (2013) A laboratory investigation to assess the influence of cement augmentation of screw and plate fixation in a simulation of distal femoral fracture of osteoporotic and non-osteoporotic bone. Bone Joint J 95-B:1406–1409CrossRefPubMedGoogle Scholar
  51. 51.
    Wahnert D, Hofmann-Fliri L, Richards RG et al (2014) Implant augmentation: adding bone cement to improve the treatment of osteoporotic distal femur fractures: a biomechanical study using human cadaver bones. Medicine (Baltimore) 93:e166CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag Berlin 2016

Authors and Affiliations

  • D. Wähnert
    • 1
  • A. Roos
    • 2
  • J. Glasbrenner
    • 1
  • K. Ilting-Reuke
    • 2
  • P. Ohrmann
    • 3
  • G. Hempel
    • 4
  • T. Duning
    • 2
  • N. Roeder
    • 5
  • M. J. Raschke
    • 1
    Email author
  1. 1.Klinik für Unfall-, Hand- und WiederherstellungschirurgieUniversitätsklinikum MünsterMünsterDeutschland
  2. 2.Stabstelle Demenzsensibles KrankenhausUniversitätsklinikum MünsterMünsterDeutschland
  3. 3.Klinik für Psychiatrie und PsychotherapieUniversitätsklinikum MünsterMünsterDeutschland
  4. 4.Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterMünsterDeutschland
  5. 5.Universitätsklinikum MünsterMünsterDeutschland

Personalised recommendations