Skip to main content
Log in

Primäre Lebertumoren

Präoperative Konditionierung der Leber und perioperatives Management bei erweiterten Leberresektionen

Primary liver tumors

Preoperative conditioning of the liver and perioperative management in extended liver resection

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Chronische Leberparenchymschädigungen sind ebenso wie eine Cholestase Risikofaktoren für eine Funktionsstörung nach Leberresektion. Die Resektion hepatozellulärer (HCC) und intrahepatischer cholangiozellulärer Karzinome (CCC) stellt aufgrund der häufig beachtlichen Tumorgröße und möglichen Vorschädigung der Leber eine besondere Herausforderung dar. Da für primäre Lebertumoren keine potenten Systemtherapien zur Verfügung stehen, sondern die Chirurgie die einzig potenziell kurative Therapiechance eröffnet, kommt der Reduktion entsprechender Risikofaktoren für ein postoperatives Leberversagen entscheidende Bedeutung zu.

Fragestellung

In dieser Arbeit sollen Maßnahmen zur Risikominimierung bei erweiterten Leberresektionen analysiert werden.

Material und Methode

Diese Arbeit basiert auf einer selektiven Literaturrecherche in der Datenbank PubMed.

Ergebnisse

Der Steatosegrad und der Ischämie-/Reperfusionsschaden können medikamentös reduziert werden. Vor ausgedehnten Resektionen ikterischer Lebern ist eine Dekompression der Gallenwege unbedingt ratsam, da eine Cholestase die Regenerationsfähigkeit des Leberparenchyms vermindert. Durch die Embolisation (PVE) oder Ligatur (PVL) kontralateraler Pfortaderäste kann zudem das postoperativ verbleibende Lebervolumen gesteigert und somit das perioperative Risiko gesenkt werden. Ähnliche Effekte werden von der selektiven internen Radiotherapie (SIRT) berichtet. Auch mehrzeitige Resektionskonzepte steigern die Resekabilität bei gleichzeitiger Reduktion des perioperativen Risikos, wobei aufgrund eines zwischenzeitlichen Tumorprogresses die geplante zweite Leberresektion bei etwa 20–30 % der Patienten nicht durchgeführt wird. Demgegenüber ist im Rahmen des ALPPS-Verfahrens bei nahezu allen Patienten eine komplette Resektion des Tumors möglich. Langzeitergebnisse hinsichtlich des Rezidivrisikos und des Überlebens stehen jedoch aus.

Schlussfolgerungen

Das perioperative Risiko erweiterter Leberresektionen kann sowohl durch technische als auch medikamentöse Maßnahmen reduziert werden.

Abstract

Background

Chronic liver parenchymal diseases as well as cholestasis are established risk factors for liver failure after partial hepatectomy. As hepatocellular (HCC) and cholangiocellular (CCC) carcinoma often require extended resection due to the often considerable size of tumors – in an often priorly damaged liver – surgery for these entities is usually demanding. Due to the lack of potent systemic treatment for primary liver tumors, surgery remains the only potentially curative treatment option for CCC and most HCC; therefore, perioperative risk factors for liver failure should be reduced as far as possible.

Objectives

In this study measures for reducing the risk of liver failure after extended liver resections were analyzed.

Methods

This analysis was based on a selective literature search in the Pubmed databank.

Results

Medical measures can be used to lower the degree of steatosis or the inflammatory reaction of ischemia/reperfusion injury. In particular, biliary decompression should be achieved in obstructive jaundice prior to liver surgery, e.g. for hilar cholangiocarcinoma, as cholestasis impairs liver regeneration. Moreover, the future liver remnant volume after extended liver resection can be increased by embolization (PVE) or ligation of major branches of the portal vein. Similar results as for PVE regarding liver hypertrophy have been reported from unilateral selective internal radiotherapy (SIRT) although this effect appears prolonged and less impressive than after PVE. In addition, two-stage concepts for liver surgery, which are also based on the regenerative potential of the liver, may lower the complication rate and increase patient safety by increasing liver volume. However, conventional two-stage procedures harbor the risk of disease progression during the time lapse to the second step which contraindicates complete resection in 20–30 % of patients. In contrast to this, a complete tumor resection is possible in nearly all patients treated by the associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) procedure but long-term results regarding tumor recurrence rate are scarce due to the limited experience with this novel technique.

Conclusion

The perioperative risks of extended liver resection can be lowered by technical and medical measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Worns MA et al (2012) Prognostic factors and outcomes of patients with hepatocellular carcinoma in non-cirrhotic liver. Scand J Gastroenterol 47(6):718–728

    Article  PubMed  Google Scholar 

  2. Lang H et al (2007) Survival and recurrence rates after resection for hepatocellular carcinoma in noncirrhotic livers. J Am Coll Surg 205(1):27–36

    Article  PubMed  Google Scholar 

  3. Lang H et al (2009) Operations for intrahepatic cholangiocarcinoma: single-institution experience of 158 patients. J Am Coll Surg 208(2):218–228

    Article  PubMed  Google Scholar 

  4. Clavien PA et al (2007) Strategies for safer liver surgery and partial liver transplantation. N Engl J Med 356(15):1545–1559

    Article  PubMed  Google Scholar 

  5. Gaag NA van der et al (2010) Preoperative biliary drainage for cancer of the head of the pancreas. N Engl J Med 362(2):129–137

    Article  PubMed  Google Scholar 

  6. Aronson DC et al (1995) The effect of extrahepatic cholestasis on liver regeneration after partial hepatectomy in the rat. Liver 15(5):242–246

    Article  CAS  PubMed  Google Scholar 

  7. Yamano T et al (2002) Delayed liver regeneration with negative regulation of hepatocyte growth factor and positive regulation of transforming growth factor-beta1 mRNA after portal branch ligation in biliary obstructed rats. Surgery 131(2):163–171

    Article  PubMed  Google Scholar 

  8. Negm AA et al (2010) Routine bile collection for microbiological analysis during cholangiography and its impact on the management of cholangitis. Gastrointest Endosc 72(2):284–291

    Article  PubMed  Google Scholar 

  9. Marsman HA et al (2013) Hepatic regeneration and functional recovery following partial liver resection in an experimental model of hepatic steatosis treated with omega-3 fatty acids. Br J Surg 100(5):674–683

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez-Periz A et al (2009) Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: a role for resolvins and protectins. FASEB J 23(6):1946–1957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Sanyal AJ et al (2014) No significant effects of ethyl-eicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. Gastroenterology 147(2):377–384 e1

    Article  CAS  PubMed  Google Scholar 

  12. Belfort R et al (2006) A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 355(22):2297–2307

    Article  CAS  PubMed  Google Scholar 

  13. Boettcher E et al (2012) Meta-analysis: pioglitazone improves liver histology and fibrosis in patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 35(1):66–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Vauthey JN et al (2006) Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J Clin Oncol 24(13):2065–2072

    Article  CAS  PubMed  Google Scholar 

  15. Orci LA et al (2013) Systematic review and meta-analysis of the effect of perioperative steroids on ischaemia-reperfusion injury and surgical stress response in patients undergoing liver resection. Br J Surg 100(5):600–609

    Article  CAS  PubMed  Google Scholar 

  16. Shindoh J, D Tzeng CW, Vauthey JN (2012) Portal vein embolization for hepatocellular carcinoma. Liver Cancer 1(3–4):159–167

  17. Furrer K et al (2008) Selective portal vein embolization and ligation trigger different regenerative responses in the rat liver. Hepatology 47(5):1615–1623

    Article  PubMed  Google Scholar 

  18. Abulkhir A et al (2008) Preoperative portal vein embolization for major liver resection: a meta-analysis. Ann Surg 247(1):49–57

    Article  PubMed  Google Scholar 

  19. Sofue K et al (2014) Right portal vein embolization with absolute ethanol in major hepatic resection for hepatobiliary malignancy. Br J Surg 101(9):1122–1128

    Article  CAS  PubMed  Google Scholar 

  20. Leung U et al (2014) Remnant growth rate after portal vein embolization is a good early predictor of post-hepatectomy liver failure. J Am Coll Surg 219(4):620–630

    Article  PubMed  Google Scholar 

  21. Nagino M et al (2000) Right trisegment portal vein embolization for biliary tract carcinoma: technique and clinical utility. Surgery 127(2):155–160

    Article  CAS  PubMed  Google Scholar 

  22. Kishi Y et al (2008) Is embolization of segment 4 portal veins before extended right hepatectomy justified? Surgery 144(5):744–751

    Article  PubMed  Google Scholar 

  23. Shindoh J et al (2013) Analysis of the efficacy of portal vein embolization for patients with extensive liver malignancy and very low future liver remnant volume, including a comparison with the associating liver partition with portal vein ligation for staged hepatectomy approach. J Am Coll Surg 217(1):126–133 (discussion 133–134)

    Article  PubMed  Google Scholar 

  24. Schadde E et al (2014) ALPPS offers a better chance of complete resection in patients with primarily unresectable liver tumors compared with conventional-staged hepatectomies: results of a multicenter analysis. World J Surg 38(6):1510–1519

    Article  PubMed  Google Scholar 

  25. Imamura H et al (2005) Assessment of hepatic reserve for indication of hepatic resection: decision tree incorporating indocyanine green test. J Hepatobiliary Pancreat Surg 12(1):16–22

    Article  PubMed  Google Scholar 

  26. Berzigotti A et al (2014) Portal hypertension on the outcome of surgery for hepatocellular carcinoma in compensated cirrhosis: a systematic review and meta-analysis. Hepatology [Epub ahead of print]

  27. Hoekstra LT et al (2013) Physiological and biochemical basis of clinical liver function tests: a review. Ann Surg 257(1):27–36

    Article  PubMed  Google Scholar 

  28. Ogata S et al (2006) Sequential arterial and portal vein embolizations before right hepatectomy in patients with cirrhosis and hepatocellular carcinoma. Br J Surg 93(9):1091–1098

    Article  CAS  PubMed  Google Scholar 

  29. Camacho JC et al (2014) Modified response evaluation criteria in solid tumors and European Association for The Study of the Liver criteria using delayed-phase imaging at an early time point predict survival in patients with unresectable intrahepatic cholangiocarcinoma following yttrium-90 radioembolization. J Vasc Interv Radiol 25(2):256–265

    Article  PubMed  Google Scholar 

  30. Salem R, Lewandowski RJ (2013) Chemoembolization and radioembolization for hepatocellular carcinoma. Clin Gastroenterol Hepatol 11(6):604–611 (quiz e43–e44)

    Article  PubMed Central  PubMed  Google Scholar 

  31. Theysohn JM et al (2014) Hepatic volume changes after lobar selective internal radiation therapy (SIRT) of hepatocellular carcinoma. Clin Radiol 69(2):172–178

    Article  CAS  PubMed  Google Scholar 

  32. Gaba RC et al (2009) Radiation lobectomy: preliminary findings of hepatic volumetric response to lobar yttrium-90 radioembolization. Ann Surg Oncol 16(6):1587–1596

    Article  PubMed  Google Scholar 

  33. Vouche M et al (2013) Radiation lobectomy: time-dependent analysis of future liver remnant volume in unresectable liver cancer as a bridge to resection. J Hepatol 59(5):1029–1036

    Article  PubMed  Google Scholar 

  34. Teo JY et al (2014) Underlying liver disease influences volumetric changes in the spared hemiliver after selective internal radiation therapy with 90Y in patients with hepatocellular carcinoma. J Dig Dis 15(8):444–450

    Article  CAS  PubMed  Google Scholar 

  35. Garlipp B et al (2014) Left-liver hypertrophy after therapeutic right-liver radioembolization is substantial but less than after portal vein embolization. Hepatology 59(5):1864–1873

    Article  CAS  PubMed  Google Scholar 

  36. Heinrich S et al (2006) Portal vein ligation and partial hepatectomy differentially influence growth of intrahepatic metastasis and liver regeneration in mice. J Hepatol 45(1):35–42

    Article  PubMed  Google Scholar 

  37. Heinrich S, Lang H (2013) Liver metastases from colorectal cancer: technique of liver resection. J Surg Oncol 107(6):579–584

    Article  PubMed  Google Scholar 

  38. Elias D et al (2002) Preoperative selective portal vein embolization before hepatectomy for liver metastases: long-term results and impact on survival. Surgery 131(3):294–249

    Article  PubMed  Google Scholar 

  39. Narita M et al (2011) Two-stage hepatectomy for multiple bilobar colorectal liver metastases. Br J Surg 98(10):1463–1475

    Article  CAS  PubMed  Google Scholar 

  40. Schnitzbauer AA et al (2012) Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann Surg 255(3):405–414

    Article  PubMed  Google Scholar 

  41. Schadde E et al (2014) Early survival and safety of ALPPS: first report of the international ALPPS registry. Ann Surg 260(5):829–838

    Article  PubMed  Google Scholar 

  42. Knoefel WT et al (2013) In situ liver transection with portal vein ligation for rapid growth of the future liver remnant in two-stage liver resection. Br J Surg 100(3):388–394

    Article  CAS  PubMed  Google Scholar 

  43. Rahbari NN et al (2011) Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery 149(5):713–724

    Article  PubMed  Google Scholar 

  44. Paugam-Burtz C et al (2009) Prospective validation of the „fifty-fifty“ criteria as an early and accurate predictor of death after liver resection in intensive care unit patients. Ann Surg 249(1):124–128

    Article  PubMed  Google Scholar 

  45. Mullen JT et al (2007) Hepatic insufficiency and mortality in 1,059 noncirrhotic patients undergoing major hepatectomy. J Am Coll Surg 204(5):854–862 (discussion 862–864)

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. S. Heinrich und H. Lang geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lang MA, FACS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinrich, S., Lang, H. Primäre Lebertumoren. Chirurg 86, 125–131 (2015). https://doi.org/10.1007/s00104-014-2881-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-014-2881-0

Schlüsselwörter

Keywords

Navigation