Skip to main content
Log in

Molekulare Bildgebung in der onkologischen Chirurgie

Technische Grundlagen und Bedeutung

Molecular imaging in oncological surgery

Technical principles and importance

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Positronenemissionscomputertomographie (PET) wird immer stärker in onkologische Behandlungskonzepte eingebunden.

Fragestellung

Was kann die PET dem onkologisch tätigen Chirurgen bieten?

Methoden

Nach Einführung in das Grundprinzip der PET werden der gegenwärtiger Stand sowie Indikationen und Grenzen dieser Methode erläutert.

Ergebnisse

Die PET ist eine quantitative, funktionelle Bildgebung, welche sowohl der Detektion als auch der Charakterisierung von Tumoren dient. Sie erlaubt ebenso eine exakte prätherapeutische Ausbreitungsdiagnostik wie die Rezidiverkennung in der Tumornachsorge und führt bei ca. einem Drittel aller onkologischen Patienten zu einer Änderung des therapeutischen Managements. Neue Radiopharmaka und die neueste Gerätegeneration haben die diagnostischen Möglichkeiten erweitert.

Diskussion

Die Hybridbildgebung (PET/Computertomographie und PET/Magentresonanztomographie) bringt nochmals einen diagnostischen Zugewinn und hat die Akzeptanz der PET weiter erhöht.

Abstract

Background

Diagnostic imaging with positron emission tomography (PET) is becoming increasingly more involved in oncological therapy management.

Objectives

How can PET be helpful in oncological surgery?

Methods

After a short introduction into the basic principles of PET the current state of imaging as well as indications and limitations of the method are described.

Results

The PET is a functional and quantitative imaging technique, enabling detection and characterization of tumors. It is applied in pretherapeutic staging as well as in follow-up and therapy assessment. The use of PET changes the therapy management in about one third of all oncology patients. New radiopharmaceuticals and novel technologies expand the diagnostic potential.

Discussion

Hybrid imaging with PET computed tomography (CT) and PET magnetic resonance imaging (MRI) further improves diagnostic imaging and increases the acceptance of PET further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Bamberg M, Diehl V, Herrmann T et al (2006) Positron emission tomography (PET) in oncology: a part of medical therapeutic expertise. Dtsch Med Wochenschr 131:512–515

    Article  CAS  PubMed  Google Scholar 

  2. Beyer T, Townsend DW, Brun T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    CAS  PubMed  Google Scholar 

  3. Boellaard R (2009) Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50(Suppl 1):11–20

    Article  Google Scholar 

  4. Brogsitter C, Zophel K, Kotzerke J (2013) 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging 40(Suppl 1):18–27

    Article  CAS  Google Scholar 

  5. Crippa F, Gerali A, Alessi A et al (2004) FDG-PET for axillary lymph node staging in primary breast cancer. Eur J Nucl Med Mol Imaging 31(Suppl 1):97–102

    Article  Google Scholar 

  6. Eder M, Eisenhut M, Babich J et al (2013) PSMA as a target for radiolabelled small molecules. Eur J Nucl Med Mol Imaging 40:819–823

    Article  PubMed Central  PubMed  Google Scholar 

  7. Engert A, Haverkamp H, Kobe C et al (2012) Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet 379:1791–1799

    Article  CAS  PubMed  Google Scholar 

  8. Eschmann SM, Friedel G, Paulsen F et al (2007) Impact of staging with 18F-FDG-PET on outcome of patients with stage III non-small cell lung cancer: PET identifies potential survivors. Eur J Nucl Med Mol Imaging 34:54–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Geworski L, Knoop BO, De Wit M et al (2002) Multicenter comparison of calibration and cross calibration of PET scanners. J Nucl Med 43:635–639

    PubMed  Google Scholar 

  10. Hillner BE, Siegel BA, Shields AF et al (2008) Relationship between cancer type and impact of PET and PET/CT on intended management: findings of the national oncologic PET registry. J Nucl Med 49:1928–1935

    Article  PubMed  Google Scholar 

  11. Hofheinz F, Potzsch C, Oehme L et al (2012) Automatic volume delineation in oncological PET. Evaluation of a dedicated software tool and comparison with manual delineation in clinical data sets. Nuklearmedizin 51:9–16

    Article  CAS  PubMed  Google Scholar 

  12. Judenhofer MS, Wehrl HF, Newport DF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    Article  CAS  PubMed  Google Scholar 

  13. Juweid ME, Stroobants S, Hoekstra OS et al (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 25:571–578

    Article  PubMed  Google Scholar 

  14. Kotzerke J, Luster M, Freesmeyer M (2012) Give me a fixed point in space, and I will lift the world upside down. Nuklearmedizin 51:65–66

    Article  CAS  PubMed  Google Scholar 

  15. Kotzerke J, Oehme L, Lindner O et al (2010) Positron emission tomography 2008 in Germany – results of the query and current status. Nuklearmedizin 49:58–64

    Article  CAS  PubMed  Google Scholar 

  16. Krause BJ, Beyer T, Bockisch A et al (2007) FDG-PET/CT in oncology. German guideline. Nuklearmedizin 46:291–301

    Article  CAS  PubMed  Google Scholar 

  17. Lardinois D, Weder W, Hany TF et al (2003) Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 348:2500–2507

    Article  PubMed  Google Scholar 

  18. Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A 97:9226–9233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Pichler BJ, Wehrl HF, Judenhofer MS (2008) Latest advances in molecular imaging instrumentation. J Nucl Med 49(Suppl 2):5S–23S

    Article  PubMed  Google Scholar 

  20. Reske SN, Kotzerke J (2001) FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, „Onko-PET III“, 21 July and 19 September 2000. Eur J Nucl Med 28:1707–1723

    Article  CAS  PubMed  Google Scholar 

  21. Schierz JH, Opfermann T, Steenbeck J et al (2013) Early dynamic 18F-FDG PET to detect hyperperfusion in hepatocellular carcinoma liver lesions. J Nucl Med 54:848–854

    Article  CAS  PubMed  Google Scholar 

  22. Soderlund V, Larsson SA, Jacobsson H (2007) Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging 34:1018–1022

    Article  PubMed  Google Scholar 

  23. Tomasi G, Turkheimer F, Aboagye E (2012) Importance of quantification for the analysis of PET data in oncology: review of current methods and trends for the future. Mol Imaging Biol 14:131–146

    Article  PubMed  Google Scholar 

  24. Wahl RL, Jacene H, Kasamon Y et al (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Walker-Samuel S, Ramasawmy R, Torrealdea F et al (2013) In vivo imaging of glucose uptake and metabolism in tumors. Nat Med 19:1067–1072

    Article  CAS  PubMed  Google Scholar 

  26. Wehrl HF, Hossain M, Lankes K et al (2013) Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med 19:1184–1189

    Article  CAS  PubMed  Google Scholar 

  27. Wester HJ (2007) Nuclear imaging probes: from bench to bedside. Clin Cancer Res 13:3470–3481

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. J. Kotzerke gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kotzerke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotzerke, J. Molekulare Bildgebung in der onkologischen Chirurgie. Chirurg 85, 474–480 (2014). https://doi.org/10.1007/s00104-013-2666-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-013-2666-x

Schlüsselwörter

Keywords

Navigation