Skip to main content
Log in

„Small-for-size“

Experimentelle Erkenntnisse für die Leberchirurgie

Small-for-size

Experimental findings for liver surgery

  • Übersichten
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Die Besonderheit der hepatischen Makrozirkulation, d. h. die parallele portalvenöse und arterielle Blutversorgung, ist von erheblicher Relevanz für die Leberchirurgie. Nach ausgedehnter Hepatektomie oder Transplantation einer größenreduzierten Leber wird das verbleibende oder transplantierte Lebergewebe stärker perfundiert, da die Leber den portalvenösen Einstrom kaum regulieren kann. Diese portale Hyperperfusion ist zum einen für die Induktion der Leberzellproliferation verantwortlich, wird auf der anderen Seite aber als einer der wesentlichen Momente in der Pathogenese des „Small-for-size“-Syndroms gesehen. Die sog. „hepatic arterial buffer response“, womit die semireziproke Beziehung zwischen der Durchblutung der Pfortader und der Durchblutung der Leberarterie beschrieben wird, führt gleichzeitig zu einer arteriellen Minderversorgung der „Small-for-size“-Leber. In diesem Beitrag werden experimentelle und klinische Daten diskutiert, die die hohe aber bislang wenig berücksichtigte Relevanz dieser arteriellen Minderversorgung bei der Entwicklung eines „Small-for-size“-Syndroms unterstreichen.

Abstract

The characteristics of the hepatic macrocirculation, i.e., the parallel portal-venous and arterial blood supply, is of utmost relevance for liver surgery. With extended hepatectomy or transplantation of a reduced-size liver the remaining or transplanted liver tissue is overperfused because the liver fails to regulate the portal-venous inflow. This portal hyperperfusion is responsible for the initiation of liver cell proliferation but represents at the same time one of the substantial events in the pathogenesis of the small-for-size syndrome. Portal-venous hyperperfusion, the so-called hepatic arterial buffer response, which describes the semi-reciprocal relationship between the portal-venous and hepatic arterial blood flows, leads to an arterial hypoperfusion of the small-for-size liver. In this article experimental and clinical data are discussed which underline the high but so far overseen relevance of this arterial underperfusion in the development of a small-for-size syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Knisely MH, Harding F, Debacker H (1957) Hepatic sphincters; brief summary of present-day knowledge. Science 125(3256):1023–1026

    Article  PubMed  CAS  Google Scholar 

  2. McCuskey RS (1971) Sphincters in the microvascular system. Microvasc Res 3(4):428–433

    Article  PubMed  CAS  Google Scholar 

  3. Yamamoto K (1998) Ultrastructural study on the venous sphincter in the sublobular vein of the canine liver. Microvasc Res 55(3):215–222

    Article  PubMed  CAS  Google Scholar 

  4. McCuskey RS (2000) Morphological mechanisms for regulating blood flow through hepatic sinusoids. Liver 20(1):3–7

    Article  PubMed  CAS  Google Scholar 

  5. Rappaport AM (1973) The microcirculatory hepatic unit. Microvasc Res 6(2):212–228

    Article  PubMed  CAS  Google Scholar 

  6. Pannarale L, Onori P, Borghese F et al (2007) Three-dimensional organization of the hepatic artery terminal branches: a scanning electron microscopic study of vascular corrosion casts of rat liver. Ital J Anat Embryol 112(1):1–12

    PubMed  Google Scholar 

  7. Oda M, Yokomori H, Han JY (2006) Regulatory mechanisms of hepatic microcirculatory hemodynamics: hepatic arterial system. Clin Hemorheol Microcirc 34(1–2):11–26

    Google Scholar 

  8. Sasse D, Spornitz UM, Maly IP (1992) Liver architecture. Enzyme 46(1–3):8–32

    Google Scholar 

  9. Mall FP (1906) A study of the structural unit of the liver. Am J Anat 5(3):227–308

    Article  Google Scholar 

  10. Vollmar B, Menger MD (2009) The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 89(4):1269–1339

    Article  PubMed  CAS  Google Scholar 

  11. Eipel C, Abshagen K, Vollmar B (2010) Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J Gastroenterol 16(48):6046–6057

    Article  PubMed  Google Scholar 

  12. Lautt WW (1996) The 1995 Ciba-Geigy Award Lecture. Intrinsic regulation of hepatic blood flow. Can J Physiol Pharmacol 74(3):223–233

    Article  PubMed  CAS  Google Scholar 

  13. Lautt WW (2007) Regulatory processes interacting to maintain hepatic blood flow constancy: Vascular compliance, hepatic arterial buffer response, hepatorenal reflex, liver regeneration, escape from vasoconstriction. Hepatol Res 37(11):891–903

    Article  PubMed  Google Scholar 

  14. Lautt WW, Ming Z (2005) Hepatic hemodynamics in portal hypertension. In: Sanyal AJ, Shah VH (Hrsg) Portal hypertension: pathobiology, evaluation, and treatment. Humana Press Inc, Totowa, S 85–97

  15. Mathie RT, Alexander B (1990) The role of adenosine in the hyperaemic response of the hepatic artery to portal vein occlusion (the ‚buffer response‘). Br J Pharmacol 100(3):626–630

    PubMed  CAS  Google Scholar 

  16. Browse DJ, Mathie RT, Benjamin IS, Alexander B (2003) The role of ATP and adenosine in the control of hepatic blood flow in the rabbit liver in vivo. Comp Hepatol 2(1):9

    Article  PubMed  Google Scholar 

  17. Hoetzel A, Welle A, Schmidt R et al (2008) Nitric oxide-deficiency regulates hepatic heme oxygenase-1. Nitric Oxide 18(1):61–69

    Article  PubMed  CAS  Google Scholar 

  18. Siebert N, Cantre D, Eipel C, Vollmar B (2008) H2S contributes to the hepatic arterial buffer response and mediates vasorelaxation of the hepatic artery via activation of K(ATP) channels. Am J Physiol Gastrointest Liver Physiol 295(6):G1266–G1273

    Article  PubMed  CAS  Google Scholar 

  19. Pannen BH, Bauer M (1998) Differential regulation of hepatic arterial and portal venous vascular resistance by nitric oxide and carbon monoxide in rats. Life Sci 62(22):2025–2033

    Article  PubMed  CAS  Google Scholar 

  20. Ayuse T, Mishima K, Oi K, et al (2010) Effects of nitric oxide donor on hepatic arterial buffer response in anesthetized pigs. J Invest Surg 23(4):183–189

    Article  PubMed  Google Scholar 

  21. Mathie RT, Ralevic V, Alexander B, Burnstock G (1991) Nitric oxide is the mediator of ATP-induced dilatation of the rabbit hepatic arterial vascular bed. Br J Pharmacol 103(2):1602–1606

    PubMed  CAS  Google Scholar 

  22. Grund F, Sommerschild HT, Winecoff A et al (1997) Importance of nitric oxide in hepatic arterial blood flow and total hepatic blood volume regulation in pigs. Acta Physiol Scand 161(3):303–309

    Article  PubMed  CAS  Google Scholar 

  23. Ayuse T, Brienza N, Revelly JP et al (1995) Role of nitric oxide in porcine liver circulation under normal and endotoxemic conditions. J Appl Physiol 78(4):1319–1329

    PubMed  CAS  Google Scholar 

  24. Mueller L, Broering DC, Meyer J et al (2002) The induction of the immediate-early-genes Egr-1, PAI-1 and PRL-1 during liver regeneration in surgical models is related to increased portal flow. J Hepatol 37(5):606–612

    Article  PubMed  CAS  Google Scholar 

  25. Lambotte L, Li B, Leclercq I et al (2000) The compensatory hyperplasia (liver regeneration) following ligation of a portal branch is initiated before the atrophy of the deprived lobes. J Hepatol 32(6):940–955

    Article  PubMed  CAS  Google Scholar 

  26. Marubashi S, Sakon M, Nagano H et al (2004) Effect of portal hemodynamics on liver regeneration studied in a novel portohepatic shunt rat model. Surgery 136(5):1028–1037

    Article  PubMed  Google Scholar 

  27. Eguchi S, Yanaga K, Sugiyama N et al (2003) Relationship between portal venous flow and liver regeneration in patients after living donor right-lobe liver transplantation. Liver Transpl 9(6):547–551

    Article  PubMed  Google Scholar 

  28. Abshagen K, Eipel C, Kalff JC et al (2008) Kupffer cells are mandatory for adequate liver regeneration by mediating hyperperfusion via modulation of vasoactive proteins. Microcirculation 15(1):37–47

    Article  PubMed  CAS  Google Scholar 

  29. Hortelano S, Dewez B, Genaro AM et al (1995) Nitric oxide is released in regenerating liver after partial hepatectomy. Hepatology 21(3):776–786

    PubMed  CAS  Google Scholar 

  30. Schoen JM, Wang HH, Minuk GY, Lautt WW (2001) Shear stress-induced nitric oxide release triggers the liver regeneration cascade. Nitric Oxide 5(5):453–464

    Article  PubMed  CAS  Google Scholar 

  31. Schoen JM, Lautt WW (2002) Nitric oxide potentiates C-Fos mRNA expression after 2/3 partial hepatectomy. Proc West Pharmacol Soc 45:47–48

    PubMed  CAS  Google Scholar 

  32. Morello D, Lavenu A, Babinet C (1990) Differential regulation and expression of jun, c-fos and c-myc proto-oncogenes during mouse liver regeneration and after inhibition of protein synthesis. Oncogene 5(10):1511–1519

    PubMed  CAS  Google Scholar 

  33. Fondevila C, Hessheimer AJ, Taura P et al (2010) Portal hyperperfusion: mechanism of injury and stimulus for regeneration in porcine small-for-size transplantation. Liver Transpl 16(3):364–374

    Article  PubMed  Google Scholar 

  34. Shih KC, Man K (2010) Small-for-size liver graft injury – impact on tumor behavior. Transplant Rev (Orlando) 24(1):1–10

    Google Scholar 

  35. Troisi R, Ricciardi S, Smeets P et al (2005) Effects of hemi-portocaval shunts for inflow modulation on the outcome of small-for-size grafts in living donor liver transplantation. Am J Transplant 5(6):1397–1404

    Article  PubMed  Google Scholar 

  36. Giacomoni A, Lauterio A, Donadon M et al (2008) Should we still offer split-liver transplantation for two adult recipients? A retrospective study of our experience. Liver Transpl 14(7):999–1006

    Article  PubMed  Google Scholar 

  37. Azoulay D, Castaing D, Adam R et al (2001) Split-liver transplantation for two adult recipients: feasibility and long-term outcomes. Ann Surg 233(4):565–574

    Article  PubMed  CAS  Google Scholar 

  38. Loss M, Obed A, Schlitt HJ (2008) Splitlebertransplantation. Chirurg 79(2):144–148

    Article  PubMed  CAS  Google Scholar 

  39. Dahm F, Georgiev P, Clavien PA (2005) Small-for-size syndrome after partial liver transplantation: definition, mechanisms of disease and clinical implications. Am J Transplant 5(11):2605–2610

    Article  PubMed  Google Scholar 

  40. Sutaria R, Adams DH (2010) Efforts to expand the donor pool for liver transplantation. F1000 Med Rep 2(16):42

    PubMed  Google Scholar 

  41. Gruttadauria S, Pagano D, Luca A, Gridelli B (2010) Small-for-size syndrome in adult-to-adult living-related liver transplantation. World J Gastroenterol 16(40):5011–5015

    Article  PubMed  Google Scholar 

  42. Garcea G, Maddern GJ (2009) Liver failure after major hepatic resection. J Hepatobiliary Pancreat Surg 16(2):145–155

    Article  PubMed  Google Scholar 

  43. Man K, Fan ST, Lo CM et al (2003) Graft injury in relation to graft size in right lobe live donor liver transplantation: a study of hepatic sinusoidal injury in correlation with portal hemodynamics and intragraft gene expression. Ann Surg 237(2):256–264

    PubMed  Google Scholar 

  44. Man K, Lo CM, Ng IO et al (2001) Liver transplantation in rats using small-for-size grafts: a study of hemodynamic and morphological changes. Arch Surg 136(3):280–285

    Article  PubMed  CAS  Google Scholar 

  45. Kiuchi T, Kasahara M, Uryuhara K et al (1999) Impact of graft size mismatching on graft prognosis in liver transplantation from living donors. Transplantation 67(2):321–327

    Article  PubMed  CAS  Google Scholar 

  46. Li J, Liang L, Ma T et al (2010) Sinusoidal microcirculatory changes after small-for-size liver transplantation in rats. Transpl Int 23(9):924–933

    PubMed  Google Scholar 

  47. Kiuchi T, Onishi Y, Nakamura T (2010) Small-for-size graft: not defined solely by being small for size. Liver Transpl 16(7):815–817

    Article  PubMed  Google Scholar 

  48. Kiuchi T, Oike F, Yamamoto H (2003) Small-for-size graft in liver transplantation. Nagoya J Med Sci 66(3–4):95–102

    Google Scholar 

  49. Lo CM, Fan ST, Chan JK et al (1996) Minimum graft volume for successful adult-to-adult living donor liver transplantation for fulminant hepatic failure. Transplantation 62(5):696–698

    Article  PubMed  CAS  Google Scholar 

  50. Hill MJ, Hughes M, Jie T et al (2009) Graft weight/recipient weight ratio: how well does it predict outcome after partial liver transplants? Liver Transpl 15(9):1056–1062

    Article  PubMed  Google Scholar 

  51. Shimada M, Ijichi H, Yonemura Y et al (2004) Is graft size a major risk factor in living-donor adult liver transplantation? Transpl Int 17(6):310–316

    Article  PubMed  CAS  Google Scholar 

  52. Nishizaki T, Ikegami T, Hiroshige S et al (2001) Small graft for living donor liver transplantation. Ann Surg 233(4):575–580

    Article  PubMed  CAS  Google Scholar 

  53. Sanefuji K, Iguchi T, Ueda S et al (2010) New prediction factors of small-for-size syndrome in living donor adult liver transplantation for chronic liver disease. Transpl Int 23(4):350–357

    Article  PubMed  Google Scholar 

  54. Henderson JM, Gilmore GT, Mackay GJ et al (1992) Hemodynamics during liver transplantation: the interactions between cardiac output and portal venous and hepatic arterial flows. Hepatology 16(3):715–718

    Article  PubMed  CAS  Google Scholar 

  55. Payen DM, Fratacci MD, Dupuy P et al (1990) Portal and hepatic arterial blood flow measurements of human transplanted liver by implanted Doppler probes: interest for early complications and nutrition. Surgery 107(4):417–427

    PubMed  CAS  Google Scholar 

  56. Ishikawa M, Yamataka A, Kawamoto S et al (1995) Hemodynamic changes in blood flow through the denervated liver in pigs. J Invest Surg 8(1):95–100

    Article  PubMed  CAS  Google Scholar 

  57. Kahn D, Hoorn-Hickman R van, Terblanche J (1984) Liver blood flow after partial hepatectomy in the pig. J Surg Res 37(4):290–294

    Article  PubMed  CAS  Google Scholar 

  58. Cantre D, Schuett H, Hildebrandt A et al (2008) Nitric oxide reduces organ injury and enhances regeneration of reduced-size livers by increasing hepatic arterial flow. Br J Surg 95(6):785–792

    Article  PubMed  CAS  Google Scholar 

  59. Smyrniotis V, Kostopanagiotou G, Kondi A et al (2002) Hemodynamic interaction between portal vein and hepatic artery flow in small-for-size split liver transplantation. Transpl Int 15(7):355–360

    Article  PubMed  Google Scholar 

  60. Hickman R, Stapleton GN, Mets B et al (1995) Hepatic blood flow during reduced liver grafting in pigs. A comparison of controls and recipients of intact allografts. Dig Dis Sci 40(6):1246–1251

    Article  PubMed  CAS  Google Scholar 

  61. Kelly DM, Zhu X, Shiba H et al (2009) Adenosine restores the hepatic artery buffer response and improves survival in a porcine model of small-for-size syndrome. Liver Transpl 15(11):1448–1457

    Article  PubMed  Google Scholar 

  62. Wang HS, Ohkohchi N, Enomoto Y et al (2005) Excessive portal flow causes graft failure in extremely small-for-size liver transplantation in pigs. World J Gastroenterol 11(44):6954–6959

    PubMed  Google Scholar 

  63. Hashimoto K, Miller CM, Quintini C et al (2010) Is impaired hepatic arterial buffer response a risk factor for biliary anastomotic stricture in liver transplant recipients? Surgery 148(3):582–588

    Article  PubMed  Google Scholar 

  64. Marcos A, Olzinski AT, Ham JM et al (2000) The interrelationship between portal and arterial blood flow after adult to adult living donor liver transplantation. Transplantation 70(12):1697–1703

    Article  PubMed  CAS  Google Scholar 

  65. Bolognesi M, Sacerdoti D, Bombonato G et al (2002) Change in portal flow after liver transplantation: effect on hepatic arterial resistance indices and role of spleen size. Hepatology 35(3):601–608

    Article  PubMed  Google Scholar 

  66. Troisi R, Cammu G, Militerno G et al (2003) Modulation of portal graft inflow: a necessity in adult living-donor liver transplantation? Ann Surg 237(3):429–436

    PubMed  Google Scholar 

  67. Troisi R, Hemptinne B de (2003) Clinical relevance of adapting portal vein flow in living donor liver transplantation in adult patients. Liver Transpl 9(9):S36–S41

    Article  PubMed  Google Scholar 

  68. Demetris AJ, Kelly DM, Eghtesad B et al (2006) Pathophysiologic observations and histopathologic recognition of the portal hyperperfusion or small-for-size syndrome. Am J Surg Pathol 30(8):986–993

    Article  PubMed  Google Scholar 

  69. Quintini C, Hirose K, Hashimoto K et al (2008) „Splenic artery steal syndrome“ is a misnomer: the cause is portal hyperperfusion, not arterial siphon. Liver Transpl 14(3):374–379

    Article  PubMed  Google Scholar 

  70. Mogl MT, Nussler NC, Presser SJ et al (2010) Evolving experience with prevention and treatment of splenic artery syndrome after orthotopic liver transplantation. Transpl Int 23(8):831–841

    Article  PubMed  Google Scholar 

  71. Langer R, Langer M, Scholz A et al (1992) The splenic steal syndrome and the gastroduodenal steal syndrome in patients before and after liver transplantation. Aktuelle Radiol 2(2):55–58

    PubMed  CAS  Google Scholar 

  72. Sharma S, Gurakar A, Jabbour N (2008) Biliary strictures following liver transplantation: past, present and preventive strategies. Liver Transpl 14(6):759–769

    Article  PubMed  Google Scholar 

  73. Eipel C, Abshagen K, Ritter J et al (2010) Splenectomy improves survival by increasing arterial blood supply in a rat model of reduced-size liver. Transpl Int 23(10):998–1007

    Article  PubMed  Google Scholar 

  74. Corbin IR, Buist R, Volotovskyy V et al (2002) Regenerative activity and liver function following partial hepatectomy in the rat using (31)P-MR spectroscopy. Hepatology 36(2):345–353

    Article  PubMed  CAS  Google Scholar 

  75. Shimizu H, Miyazaki M, Yoshioka S et al (1999) Changes in hepatic venous oxygen saturation related to the extent of regeneration after partial hepatectomy in rats. Am J Surg 178(5):428–431

    Article  PubMed  CAS  Google Scholar 

  76. Michalopoulos GK (2010) Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am J Pathol 176(1):2–13

    Article  PubMed  CAS  Google Scholar 

  77. Tanaka K, Ogura Y (2004) „Small-for-size graft“ and „small-for-size syndrome“ in living donor liver transplantation. Yonsei Med J 45(6):1089–1094

    PubMed  Google Scholar 

  78. Imura S, Shimada M, Ikegami T et al (2008) Strategies for improving the outcomes of small-for-size grafts in adult-to-adult living-donor liver transplantation. J Hepatobiliary Pancreat Surg 15(2):102–110

    Article  PubMed  Google Scholar 

  79. Selvaggi G, Tzakis A (2009) Surgical considerations in liver transplantation: small for size syndrome. Panminerva Med 51(4):227–233

    PubMed  CAS  Google Scholar 

  80. Ikegami T, Shimada M, Imura S et al (2008) Current concept of small-for-size grafts in living donor liver transplantation. Surg Today 38(11):971–982

    Article  PubMed  Google Scholar 

  81. Humar A, Beissel J, Crotteau S et al (2009) Delayed splenic artery occlusion for treatment of established small-for-size syndrome after partial liver transplantation. Liver Transpl 15(2):163–168

    Article  PubMed  Google Scholar 

  82. Gruttadauria S, Mandala L, Miraglia R et al (2007) Successful treatment of small-for-size syndrome in adult-to-adult living-related liver transplantation: single center series. Clin Transplant 21(6):761–766

    PubMed  Google Scholar 

  83. Ito T, Kiuchi T, Yamamoto H et al (2003) Changes in portal venous pressure in the early phase after living donor liver transplantation: pathogenesis and clinical implications. Transplantation 75(8):1313–1317

    Article  PubMed  Google Scholar 

  84. Lo CM, Liu CL, Fan ST (2003) Portal hyperperfusion injury as the cause of primary nonfunction in a small-for-size liver graft-successful treatment with splenic artery ligation. Liver Transpl 9(6):626–628

    Article  PubMed  Google Scholar 

  85. Umeda Y, Yagi T, Sadamori H et al (2008) Effects of prophylactic splenic artery modulation on portal overperfusion and liver regeneration in small-for-size graft. Transplantation 86(5):673–680

    Article  PubMed  Google Scholar 

  86. Umeda Y, Yagi T, Sadamori H et al (2007) Preoperative proximal splenic artery embolization: a safe and efficacious portal decompression technique that improves the outcome of live donor liver transplantation. Transpl Int 20(11):947–955

    Article  PubMed  Google Scholar 

  87. Ikegami T, Soejima Y, Taketomi A et al (2008) Living donor liver transplantation with extra-small graft; inflow modulation using splenectomy and temporary portocaval shunt. Hepatogastroenterology 55(82–83):670–672

    Google Scholar 

  88. Sato Y, Yamamoto S, Oya H et al (2002) Splenectomy for reduction of excessive portal hypertension after adult living-related donor liver transplantation. Hepatogastroenterology 49(48):1652–1655

    PubMed  Google Scholar 

  89. Shimada M, Ijichi H, Yonemura Y et al (2004) The impact of splenectomy or splenic artery ligation on the outcome of a living donor adult liver transplantation using a left lobe graft. Hepatogastroenterology 51(57):625–629

    PubMed  Google Scholar 

  90. Kokai H, Sato Y, Yamamoto S et al (2008) Successful super-small-for-size graft liver transplantation by decompression of portal hypertension via splenectomy and construction of a mesocaval shunt: a case report. Transplant Proc 40(8):2825–2827

    Article  PubMed  CAS  Google Scholar 

  91. Takada Y, Ueda M, Ishikawa Y et al (2004) End-to-side portocaval shunting for a small-for-size graft in living donor liver transplantation. Liver Transpl 10(6):807–810

    Article  PubMed  Google Scholar 

  92. Taniguchi M, Shimamura T, Suzuki T et al (2007) Transient portacaval shunt for a small-for-size graft in living donor liver transplantation. Liver Transpl 13(6):932–934

    Article  PubMed  Google Scholar 

  93. Yamada T, Tanaka K, Uryuhara K et al (2008) Selective hemi-portocaval shunt based on portal vein pressure for small-for-size graft in adult living donor liver transplantation. Am J Transplant 8(4):847–853

    Article  PubMed  CAS  Google Scholar 

  94. Boillot O, Delafosse B, Mechet I et al (2002) Small-for-size partial liver graft in an adult recipient; a new transplant technique. Lancet 359(9304):406–407

    Article  PubMed  Google Scholar 

  95. Botha JF, Langnas AN, Campos BD et al (2010) Left lobe adult-to-adult living donor liver transplantation: small grafts and hemiportocaval shunts in the prevention of small-for-size syndrome. Liver Transpl 16(5):649–657

    Article  PubMed  Google Scholar 

  96. Sato Y, Oya H, Yamamoto S et al (2010) Method for spontaneous constriction and closure of portocaval shunt using a ligamentum teres hepatis in small-for-size graft liver transplantation. Transplantation 90(11):1200–1203

    Article  PubMed  Google Scholar 

  97. Oura T, Taniguchi M, Shimamura T et al (2008) Does the permanent portacaval shunt for a small-for-size graft in a living donor liver transplantation do more harm than good? Am J Transplant 8(1):250–252

    Article  PubMed  CAS  Google Scholar 

  98. Hessheimer AJ, Fondevila C, Taura P et al (2010) Decompression of the portal bed and twice-baseline portal inflow are necessary for the functional recovery of a „small-for-size“ graft. Ann Surg 253(6):1201–1210

    Article  Google Scholar 

  99. Ogura Y, Hori T, El Moghazy WM et al (2010) Portal pressure < 15 mmHg is a key for successful adult living donor liver transplantation utilizing smaller grafts than before. Liver Transpl 16(6):718–728

    PubMed  Google Scholar 

  100. Palmes D, Minin E, Budny T et al (2005) The endothelin/nitric oxide balance determines small-for-size liver injury after reduced-size rat liver transplantation. Virchows Arch 447(4):731–741

    Article  PubMed  CAS  Google Scholar 

  101. Garcia-Valdecasas JC, Fuster J, Charco R et al (2003) Changes in portal vein flow after adult living-donor liver transplantation: does it influence postoperative liver function? Liver Transpl 9(6):564–569

    Article  PubMed  Google Scholar 

  102. Konishi N, Ishizaki Y, Sugo H et al (2008) Impact of a left-lobe graft without modulation of portal flow in adult-to-adult living donor liver transplantation. Am J Transplant 8(1):170–174

    PubMed  CAS  Google Scholar 

  103. Wu TJ, Dahiya D, Lee CS et al (2011) Impact of portal venous hemodynamics on indices of liver function and graft regeneration after right lobe living donor liver transplantation. Liver Transpl 7(4):373–380

    Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Eipel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eipel, C., Abshagen, K. & Vollmar, B. „Small-for-size“. Chirurg 83, 238–246 (2012). https://doi.org/10.1007/s00104-011-2179-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-011-2179-4

Schlüsselwörter

Keywords

Navigation