Skip to main content
Log in

Tissue Engineering von vaskularisiertem Myokardersatzgewebe

Biologische solide Matrizes als Substrat

Tissue engineering of vascularized myocardial prosthetic tissue

Biological and solid matrices

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Die Züchtung von künstlichem Herzmuskelersatzgewebe wird zukünftig ein an Bedeutung zunehmender therapeutischer Ansatz werden. Allerdings stellt bei der Erzeugung von Geweben, die eine größere Stärke als 100 µm erreichen sollen, die Versorgung der Graftzellen mit Sauerstoff und Nährstoffen sowie der Abtransport der Stoffwechselprodukte über Diffusionswege ein kritisches Moment dar. Die Viabilität der besiedelten Zellen des myokardialen Ersatzgewebes bedingt aber unmittelbar dessen Funktion, sodass eine möglichst frühzeitige und suffiziente Vaskularisierung erforderlich ist. Über die Auswahl des Substrats, die Strukturierung der Matrizes, spezifische zelluläre Besiedelung und Wachstumsfaktoren wird versucht, die Vaskularisierung zu optimieren.

Diese Übersichtsarbeit stellt den Stand der Forschung zur myokardialen Gewebezüchtung unter Verwendung natürlicher solider Substrate (Harnblase, Gallenblase, Dünndarm, Magen, Peritoneum, Omentum, Uterus, Skelettmuskel, Zwerchfell und Herzmuskel) dar und beleuchtet besonders die in den jeweiligen Ansätzen erzielten Erfolge bei der Vaskularisierung des bioartifiziellen Gewebes.

Abstract

Tissue engineering of bioartificial myocardial tissue will become an increasingly important therapeutic approach in the near future but supply of oxygen and nutrients as well as evacuation of metabolic products represent a critical obstacle in tissues with a thickness of 100 µm and above. Viability of seeded cells in the myocardial patch is positively correlated with its function and thus early sufficient vascularization is mandatory. The choice of substrate, structure of matrices, specific cellular seeding and addition of growth factors contribute to this necessary vascularization process.

This review article gives an overview of the current state of research on recent myocardial tissue engineering utilizing natural and solid substrates (urinary bladder, gall bladder, small intestine, stomach, peritoneum, omentum, uterus, skeletal muscle, diaphragm and cardiac muscle) with a special focus on the results of vascularization of bioartificial tissue for each approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Acker MA, Hammond RL, Mannion JD et al (1987) Skeletal muscle as the potential power source for a cardiovascular pump: assessment in vivo. Science 236(4799):324–327

    Article  PubMed  CAS  Google Scholar 

  2. Badylak S, Obermiller J, Geddes L, Matheny R (2003) Extracellular matrix for myocardial repair. Heart Surg Forum 6(2):E20–E26

    PubMed  Google Scholar 

  3. Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13(5):377–383

    Article  PubMed  CAS  Google Scholar 

  4. Badylak SF, Kochupura PV, Cohen IS et al (2006) The use of extracellular matrix as an inductive scaffold for the partial replacement of functional myocardium. Cell Transplantation 15:S29–S40

    Article  PubMed  Google Scholar 

  5. Badylak SF, Lantz GC, Coffey A, Geddes LA (1989) Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 47(1):74–80

    Article  PubMed  CAS  Google Scholar 

  6. Barandon L, Couffinhal T, Dufourcq P et al (2004) Repair of myocardial infarction by epicardial deposition of bone-marrow-cell-coated muscle patch in a murine model. Ann Thorac Surg 78(4):1409–1417

    Article  PubMed  Google Scholar 

  7. Beck CS (1935) The development of a new blood supply to the heart by operation. Ann Surg 102(5):801–813

    Article  PubMed  CAS  Google Scholar 

  8. Burugapalli K, Pandit A (2007) Characterization of tissue response and in vivo degradation of cholecyst-derived extracellular matrix. Biomacromolecules 8(11):3439–3451

    Article  PubMed  CAS  Google Scholar 

  9. Chang Y, Lai PH, Wei HJ et al (2007) Tissue regeneration observed in a basic fibroblast growth factor-loaded porous acellular bovine pericardium populated with mesenchymal stem cells. J Thorac Cardiovasc Surg 134(1):65–73

    Article  PubMed  Google Scholar 

  10. Chang Y, Lee MH, Liang HC et al (2004) Acellular bovine pericardia with distinct porous structures fixed with genipin as an extracellular matrix. Tissue Eng 10(5–6):881–892

    Google Scholar 

  11. Huang W, Zhang DS, Millard RW et al (2010) Gene manipulated peritoneal cell patch repairs infarcted myocardium. J Mol Cell Cardiol 48(4):702–712

    Article  PubMed  CAS  Google Scholar 

  12. Huang YC, Chen CT, Chen SC et al (2005) A natural compound (ginsenoside Re) isolated from Panax ginseng as a novel angiogenic agent for tissue regeneration. Pharm Res 22(4):636–646

    Article  PubMed  CAS  Google Scholar 

  13. Kanamori T, Watanabe G, Yasuda T et al (2006) Hybrid surgical angiogenesis: omentopexy can enhance myocardial angiogenesis induced by cell therapy. Ann Thorac Surg 81(1):160–167

    Article  PubMed  Google Scholar 

  14. Kelly DJ, Rosen AB, Schuldt AJ et al (2009) Increased myocyte content and mechanical function within a tissue-engineered myocardial patch following implantation. Tissue Eng Part A 15(8):2189–2201

    Article  PubMed  CAS  Google Scholar 

  15. Kusaba E, Schraut W, Sawatani S et al (1973) A diaphragmatic graft for augmenting left ventricular function: a feasibility study. Trans Am Soc Artif Intern Organs 19:251–257

    PubMed  CAS  Google Scholar 

  16. Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 15(3):353–370

    Article  PubMed  CAS  Google Scholar 

  17. Mertsching H, Walles T, Hofmann M et al (2005) Engineering of a vascularized scaffold for artificial tissue and organ generation. Biomaterials 26(33):6610–6617

    Article  PubMed  CAS  Google Scholar 

  18. Ota T, Gilbert TW, Schwartzman D et al (2008) A fusion protein of hepatocyte growth factor enhances reconstruction of myocardium in a cardiac patch derived from porcine urinary bladder matrix. J Thorac Cardiovasc Surg 136(5):1309–1317

    Article  PubMed  CAS  Google Scholar 

  19. Ott HC, Matthiesen TS, Goh SK et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221

    Article  PubMed  CAS  Google Scholar 

  20. Robinson KA, Li JS, Mathison M et al (2005) Extracellular matrix scaffold for cardiac repair. Circulation 112(9):I135–I143

    Article  PubMed  Google Scholar 

  21. Ruel MA, Sellke FW, Bianchi C et al (2003) Endogenous myocardial angiogenesis and revascularization using a gastric submucosal patch. Ann Thorac Surg 75(5):1443–1449

    Article  PubMed  Google Scholar 

  22. Suzuki R, Hattori F, Itabashi Y et al (2009) Omentopexy enhances graft function in myocardial cell sheet transplantation. Biochem Biophys Res Commun 387(2):353–359

    Article  PubMed  CAS  Google Scholar 

  23. Taheri SA, Ashraf H, Merhige M et al (2005) Myoangiogenesis after cell patch cardiomyoplasty and omentopexy in a patient with ischemic cardiomyopathy. Tex Heart Inst J 32(4):598–601

    PubMed  Google Scholar 

  24. Taheri SA, Yeh J, Batt RE et al (2008) Uterine myometrium as a cell patch as an alternative graft for transplantation to infarcted cardiac myocardium: a preliminary study. Int J Artif Organs 31(1):62–67

    PubMed  CAS  Google Scholar 

  25. Tan MY, Zhi W, Wei RQ et al (2009) Repair of infarcted myocardium using mesenchymal stem cell seeded small intestinal submucosa in rabbits. Biomaterials 30(19):3234–3240

    Article  PubMed  CAS  Google Scholar 

  26. Tudorache I, Kostin S, Meyer T et al (2009) Viable vascularized autologous patch for transmural myocardial reconstruction. Eur J Cardiothorac Surg 36(2):306–311

    Article  PubMed  Google Scholar 

  27. Wainwright JM, Czajka CA, Patel UB et al (2010) Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods 16(3):525–532

    Article  PubMed  CAS  Google Scholar 

  28. Wang B, Borazjani A, Tahai M et al (2010) Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A 94(4):1100–1110

    PubMed  Google Scholar 

  29. Wei HJ, Chen SC, Chang Y et al (2006) Porous acellular bovine pericardia seeded with mesenchymal stem cells as a patch to repair a myocardial defect in a syngeneic rat model. Biomaterials 27(31):5409–5419

    Article  PubMed  CAS  Google Scholar 

  30. Wei HJ, Liang HC, Lee MH et al (2005) Construction of varying porous structures in acellular bovine pericardia as a tissue-engineering extracellular matrix. Biomaterials 26(14):1905–1913

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Wir danken der Deutschen Forschungsgemeinschaft (DFG) für die Förderung eigener Untersuchungen zur Entwicklung vaskularisierten Myokardersatzgewebes im Rahmen des SFB599.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schilling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilling, T., Cebotari, S., Tudorache, I. et al. Tissue Engineering von vaskularisiertem Myokardersatzgewebe. Chirurg 82, 319–324 (2011). https://doi.org/10.1007/s00104-010-2032-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-010-2032-1

Schlüsselwörter

Keywords

Navigation