Skip to main content
Log in

Tissue Engineering von Herzklappen

Tissue engineering of heart valves

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Die Therapie valvulärer Herzerkrankungen hat seit der Einführung von Herzklappenprothesen und insbesondere durch die Weiterentwicklung schonender chirurgischer Verfahren wesentliche Fortschritte erfahren und gehört heute zu den Standardeingriffen in der Herzchirurgie. Da jedoch die eingesetzten Prothesen durch eine limitierte Haltbarkeit (biologische Prothesen) bzw. durch eine lebenslang notwendige Antikoagulation (mechanische Prothesen) relevante Limitationen aufweisen, wird in den letzten Jahren zunehmend an der Entwicklung von lebendigen, zur Regeneration befähigten Herzklappenprothesen im Sinne der Gewebezucht („tissue engineering“) gearbeitet. Dabei konkurrieren aktuell verschiedene Konzepte miteinander, die auf den Einsatz biologischer oder synthetischer Gerüstmaterialien und auf die Zuhilfenahme von zellulären oder extrazellulären Induktoren zur Weiterentwicklung und Reifung der Prothesen nach Implantation im Körper des Empfängers bauen. Vor allem dezellularisierte Spenderklappen kommen bereits heute zunehmend in der Klinik zum Einsatz und versprechen eine weitere Verbesserung der klinischen Ergebnisse sowohl bei jungen als auch bei älteren Patienten.

Abstract

With the introduction of heart valve prostheses cardiac valvular disease has become much more accessible to therapeutic options. However, currently available prostheses display significant limitations, such as limited long-term durability (biological prostheses) and a long-term necessity for anticoagulation therapy. Hence, alternative prosthesis types have been extensively explored in recent years particularly aiming at the development of vital and regenerative prostheses by means of tissue engineering. In the scientific field, different competing concepts have been introduced, including biological or synthetic scaffolds which can be further enhanced by cellular or extracellular components to promote further in vivo development of the prosthesis after implantation. Nowadays, decellularized donor heart valves are among the most advanced prosthesis types experiencing growing clinical attention and widespread use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Tweddell JS, Pelech AN, Jaquiss RD et al (2005) Aortic valve repair. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 112–121

  2. El-Ahdab F, Benjamin DK Jr, Wang A et al (2005) Risk of endocarditis among patients with prosthetic valves and Staphylococcus aureus bacteremia. Am J Med 118:225–229

    Article  PubMed  Google Scholar 

  3. Chikwe J, Filsoufi F, Carpentier AF (2010) Prosthetic valve selection for middle-aged patients with aortic stenosis. Nat Rev Cardiol 7:711–719

    PubMed  Google Scholar 

  4. Golczyk K, Kompis M, Englberger L et al (2010) Heart valve sound of various mechanical composite grafts, and the impact on patients‘ quality of life. J Heart Valve Dis 19:228–232

    PubMed  Google Scholar 

  5. Vesely I (2005) Heart valve tissue engineering. Circ Res 97:743–755

    Article  PubMed  CAS  Google Scholar 

  6. Brown JW, Ruzmetov M, Fukui T et al (2006) Fate of the autograft and homograft following Ross aortic valve replacement: reoperative frequency, outcome, and management. J Heart Valve Dis 15:253–260

    PubMed  Google Scholar 

  7. Schenke-Layland K, Opitz F, Gross M et al (2003) Complete dynamic repopulation of decellularized heart valves by application of defined physical signals – an in vitro study. Cardiovasc Res 60:497–509

    Article  PubMed  CAS  Google Scholar 

  8. Lichtenberg A, Cebotari S, Tudorache I et al (2006) Flow-dependent re-endothelialization of tissue-engineered heart valves. J Heart Valve Dis 15:287–293

    PubMed  Google Scholar 

  9. Akhyari P, Kamiya H, Gwanmesia P et al (2010) In vivo functional performance and structural maturation of decellularised allogenic aortic valves in the subcoronary position. Eur J Cardiothorac Surg 38:539–546

    Article  PubMed  Google Scholar 

  10. Cebotari S, Walles T, Sorrentino S et al (2002) Guided tissue regeneration of vascular grafts in the peritoneal cavity. Circ Res 90:e71

    Article  PubMed  CAS  Google Scholar 

  11. McIntire L, Greisler H, Griffith L et al (2002) WETC panel report on tissue engineering research. International Technology Research Institute, January 2002, Baltimore, MD

  12. Steinhoff G, Stock U, Karim N et al (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102:III50–55

    PubMed  CAS  Google Scholar 

  13. Schmidt CE, Baier JM (2000) Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21:2215–2231

    Article  PubMed  CAS  Google Scholar 

  14. Knight RL, Booth C, Wilcox HE et al (2005) Tissue engineering of cardiac valves: re-seeding of acellular porcine aortic valve matrices with human mesenchymal progenitor cells. J Heart Valve Dis 14:806–813

    PubMed  Google Scholar 

  15. Cebotari S, Lichtenberg A, Tudorache I et al (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114:132–137

    Article  Google Scholar 

  16. Weston MW, Yoganathan AP (2001) Biosynthetic activity in heart valve leaflets in response to in vitro flow environments. Ann Biomed Eng 29:752–763

    Article  PubMed  CAS  Google Scholar 

  17. Engelmayr GC Jr, Rabkin E, Sutherland FW et al (2005) The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials 26:175–187

    Article  PubMed  CAS  Google Scholar 

  18. Hoerstrup SP, Sodian R, Daebritz S et al (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102:44–49

    Google Scholar 

  19. Teebken OE, Wilhelmi M, Haverich A (2005) Tissue engineering for heart valves and vascular grafts. Chirurg 76:453–466

    Article  PubMed  CAS  Google Scholar 

  20. Flanagan TC, Pandit A (2003) Living artificial heart valve alternatives: a review. Eur Cell Mater 6:28–45

    PubMed  CAS  Google Scholar 

  21. Wang Q, McGoron AJ, Bianco R et al (2010) In-vivo assessment of a novel polymer (SIBS) trileaflet heart valve. J Heart Valve Dis 19:499–505

    PubMed  Google Scholar 

  22. Rashid ST, Salacinski HJ, Hamilton G, Seifalian AM (2004) The use of animal models in developing the discipline of cardiovascular tissue engineering: a review. Biomaterials 25:1627–1637

    Article  PubMed  CAS  Google Scholar 

  23. Kasimir MT, Rieder E, Seebacher G et al (2003) Comparison of different decellularization procedures of porcine heart valves. Int J Artif Organs 26:421–427

    PubMed  CAS  Google Scholar 

  24. Tudorache I, Cebotari S, Sturz G et al (2007) Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. J Heart Valve Dis 16:567–574

    PubMed  Google Scholar 

  25. Korossis SA, Booth C, Wilcox HE et al (2002) Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves. J Heart Valve Dis 11:463–471

    PubMed  Google Scholar 

  26. da Costa FD, Costa AC, Prestes R et al (2010) The early and midterm function of decellularized aortic valve allografts. Ann Thorac Surg 90:1854–1860

    Article  Google Scholar 

  27. Simon P, Kasimir MT, Seebacher G et al (2003) Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg 23:1002–1006

    Article  PubMed  CAS  Google Scholar 

  28. Naso F, Gandaglia A, Iop L et al (2010) First quantitative assay of alpha-Gal in soft tissues: presence and distribution of the epitope before and after cell removal from xenogeneic heart valves. Acta Biomater (in press)

  29. Lichtenberg A, Breymann T, Cebotari S, Haverich A (2011) Cell seeded tissue engineered cardiac valves based on allograft and xenograft scaffolds. Prog Pediatr Cardiol (in press)

  30. Leyh RG, Wilhelmi M, Walles T et al (2003) Acellularized porcine heart valve scaffolds for heart valve tissue engineering and the risk of cross-species transmission of porcine endogenous retrovirus. J Thorac Cardiovasc Surg 126:1000–1004

    Article  PubMed  CAS  Google Scholar 

  31. Lehr EJ, Rayat GR, Chiu B et al (2010) Decellularization reduces immunogenicity of sheep pulmonary artery vascular patches. J Thorac Cardiovasc Surg (in press)

  32. Wu DC, Boyd AS, Wood KJ (2008) Embryonic stem cells and their differentiated derivatives have a fragile immune privilege but still represent novel targets of immune attack. Stem Cells 26:1939–1950

    Article  PubMed  Google Scholar 

  33. Lengner CJ (2010) iPS cell technology in regenerative medicine. Ann N Y Acad Sci 1192:38–44

    Article  PubMed  CAS  Google Scholar 

  34. Goldstein S, Clarke DR, Walsh SP et al (2000) Transpecies heart valve transplant: advanced studies of a bioengineered xeno-autograft. Ann Thorac Surg 70:1962–1969

    Article  PubMed  CAS  Google Scholar 

  35. Baraki H, Tudorache I, Braun M et al (2009) Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials 30:6240–6246

    Article  PubMed  CAS  Google Scholar 

  36. Lichtenberg A, Tudorache I, Cebotari S et al (2006) Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation 114:I559–565

    Article  PubMed  Google Scholar 

  37. Lichtenberg A, Tudorachea I, Cebotaria S et al (2006) In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials 27:4221–4229

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Akhyari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhyari, P., Minol, P., Assmann, A. et al. Tissue Engineering von Herzklappen. Chirurg 82, 311–318 (2011). https://doi.org/10.1007/s00104-010-2031-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-010-2031-2

Schlüsselwörter

Keywords

Navigation