Skip to main content
Log in

Zellquellen für kardiovaskuläres Tissue Engineering

Cell sources for cardiovascular tissue engineering

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Zahlreiche Studien belegen eine signifikante Potenz verschiedener Stammzelltherapien zur Regeneration angeborener und erworbener Herzerkrankungen. Die Verwendung embryonaler Stammzellen und induzierter pluripotenter Stammzellen verspricht die mögliche Generierung und Regenerierung aller Strukturen des kardiovaskulären Systems. Fötale und adulte Stammzellen wie endotheliale Progenitorzellen, mesenchymale, hämatopoetische, kardiale Stammzellen und Myoblasten besitzen einerseits eingeschränktes multipotentes Differenzierungspotenzial. Andererseits sind sie offenbar parakrin hoch aktiv und unterstützen mit mehrfach bestätigter Sicherheit die Rekonstruktion und Herstellung kardiovaskulärer Strukturen. Auf dem visionären Weg zum durch „tissue engineering“ gebildeten, autonom funktionierenden autologen Herzen konnten bereits verschiedene vaskuläre, valvuläre und myokardiale Produkte erzeugt werden. Die Arbeit beschreibt mögliche Stammzellquellen für kardiovaskuläres Tissue Engineering und evaluiert deren Potenz und Sicherheit aus medizinischer wie ethischer Sicht entsprechend einer systematischen Literaturrecherche (Medline-Datenbank) und eigener Studien.

Abstract

Numerous studies have confirmed that stem cell therapy has significant potential for the regeneration of congenital and acquired heart diseases. The utilization of embryonic stem cells and induced pluripotent stem cells promises a possible generation and regeneration of all cardiovascular structures. On the one hand fetal and adult stem cells, e.g. endothelial progenitors, mesenchymal, hematopoietic, cardiac stem cells and myoblasts, possess limited potential for multilinear differentiation. On the other hand these cells have high paracrin activity and support with well-confirmed safety the reconstruction and formation of cardiovascular structures. On the visionary track towards an autonomously functioning autologous heart generated by tissue engineering, vascular, valvular and myocardial tissues have already been successfully created. This manuscript describes the possible stem cell sources for cardiovascular tissue engineering and evaluates their potency and safety from a medical and ethical point of view employing the data from systematic reviews (Medline database) and own investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Garry DJ, Olson EN (2006) A common progenitor at the heart of development. Cell 127:1101–1104

    PubMed  CAS  Google Scholar 

  2. Schneider VA, Mercola M (2001) Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15:304–315

    PubMed  CAS  Google Scholar 

  3. Shi Y, Katsev S, Cai C, Evans S (2000) BMP signaling is required for heart formation in vertebrates. Dev Biol 224:226–237

    PubMed  CAS  Google Scholar 

  4. Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1:435–440

    PubMed  CAS  Google Scholar 

  5. Cai CL, Liang X, Shi Y et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889

    PubMed  CAS  Google Scholar 

  6. Peterkin T, Gibson A, Loose M, Patient R (2005) The roles of GATA-4, -5 and -6 in vertebrate heart development. Semin Cell Dev Biol 16:83–94

    PubMed  CAS  Google Scholar 

  7. Brown DD, Martz SN, Binder O et al (2005) Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis. Development 132:553–563

    PubMed  CAS  Google Scholar 

  8. Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835

    PubMed  CAS  Google Scholar 

  9. Laugwitz KL, Moretti A, Lam J et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653

    PubMed  CAS  Google Scholar 

  10. Moretti A, Caron L, Nakano A et al (2006) Multipotent embryonic isl1+ Progenietor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165

    PubMed  CAS  Google Scholar 

  11. Sun Y, Liang X, Najafi N et al (2007) Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 304:286–296

    PubMed  CAS  Google Scholar 

  12. Kehat I, Kenyagin-Karsenti D, Snir M et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414

    PubMed  CAS  Google Scholar 

  13. Pillekamp F, Reppel M, Rubenchyk O et al (2007) Force measurements of human embryonic stem cell-derived cardiomyocytes in an in vitro transplantation model. Stem Cells 25:174–180

    PubMed  Google Scholar 

  14. Laflamme MA, Chen KY, Naumova AV et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    PubMed  CAS  Google Scholar 

  15. Robey TE, Saiget MK, Reinecke H, Murry CE (2008) Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol 45:567–581

    PubMed  CAS  Google Scholar 

  16. Assmus B, Honold J, Schächinger V et al (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355:1222–1232

    PubMed  CAS  Google Scholar 

  17. Leor J, Cohen S (2004) Myocardial tissue engineering: creating a muscle patch for a wounded heart. Ann N Y Acad Sci 1015:312–319

    PubMed  Google Scholar 

  18. Kofidis T, Bruin JL de, Hoyt G et al (2005) Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J Heart Lung Transplant 24:737–744

    PubMed  Google Scholar 

  19. Nussbaum J, Minami E, Laflamme MA et al (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21:1345–1357

    PubMed  CAS  Google Scholar 

  20. Barberi T, Bradbury M, Dincer Z et al (2007) Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med 13:642–648

    PubMed  CAS  Google Scholar 

  21. Knoepfler PS (2009) Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27:1050–1056

    PubMed  CAS  Google Scholar 

  22. De Coppi P, Bartsch G Jr, Siddiqui MM et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106

    Google Scholar 

  23. Zhang X, Stojkovic P, Przyborski S et al (2006) Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24:2669–2676

    PubMed  CAS  Google Scholar 

  24. French AJ, Adams CA, Anderson LS et al (2008) Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells 26:485–493

    PubMed  CAS  Google Scholar 

  25. Meissner A, Jaenisch R (2006) Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts. Nature 439:212–215

    PubMed  CAS  Google Scholar 

  26. St John J, Lovell-Badge R (2007) Human-animal cytoplasmic hybrid embryos, mitochondria, and an energetic debate. Nat Cell Biol 9:988–992

    Google Scholar 

  27. Mai Q, Yu Y, Li T et al (2007) Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17:1008–1019

    PubMed  CAS  Google Scholar 

  28. Kim K, Lerou P, Yabuuchi A et al (2007) Histocompatible embryonic stem cells by parthenogenesis. Science 315:482–486

    PubMed  CAS  Google Scholar 

  29. Guan K, Nayernia K, Maier LS et al (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203

    PubMed  CAS  Google Scholar 

  30. Guan K, Wagner S, Unsöld B et al (2007) Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circ Res 100:1615–1625

    PubMed  CAS  Google Scholar 

  31. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    PubMed  CAS  Google Scholar 

  32. Nakagawa M, Koyanagi M, Tanabe K et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    PubMed  CAS  Google Scholar 

  33. Maherali N, Sridharan R, Xie W et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70

    PubMed  CAS  Google Scholar 

  34. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    PubMed  CAS  Google Scholar 

  35. Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    PubMed  CAS  Google Scholar 

  36. Mauritz C, Schwanke K, Reppel M et al (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118:507–517

    PubMed  Google Scholar 

  37. Wilson KD, Venkatasubrahmanyam S, Jia F et al (2009) MicroRNA profiling of human-induced pluripotent stem cells. Stem Cells Dev 18:749–758

    PubMed  CAS  Google Scholar 

  38. Chen S, Takanashi S, Zhang Q et al (2007) Reversine increases the plasticity of lineage-committed mammalian cells. Proc Natl Acad Sci U S A 104:10482–10487

    PubMed  CAS  Google Scholar 

  39. Kadner A, Zund G, Maurus C et al (2004) Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. Eur J Cardiothorac Surg 25:635–641

    PubMed  Google Scholar 

  40. Furfaro EM, Gaballa MA (2007) Do adult stem cells ameliorate the damaged myocardium? Human cord blood as a potential source of stem cells. Curr Vasc Pharmacol 5:27–44

    PubMed  CAS  Google Scholar 

  41. Henning RJ, Abu-Ali H, Balis JU et al (2004) Human umbilical cord blood mononuclear cells for the treatment of acute myocardial infarction. Cell Transplant 13:729–739

    PubMed  Google Scholar 

  42. Ma N, Ladilov Y, Moebius JM et al (2006) Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: Bone marrow vs. cord blood-derived cells. Cardiovasc Res 71:158–169

    PubMed  CAS  Google Scholar 

  43. Gaebel R, Furlani D, Sorg H et al (2011) CD105 expression on human mesenchymal stemcells depends on cell origin and determines a different healing performance in cardiac regeneration. PLoS One (in press)

  44. Yerebakan C, Sandica E, Prietz S et al (2009) Autologous umbilical cord blood mononuclear cell transplantation preserves right ventricular function in a novel model of chronic right ventricular volume overload. Cell Transplant 18:855–868

    PubMed  Google Scholar 

  45. Steinhoff G (2006) The regenerating heart – hope for children with congenital heart defects. Kinderkrankenschwester 25:47–50

    PubMed  Google Scholar 

  46. Lin G, Garcia M, Ning H et al (2008) Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 17:1053–1063

    PubMed  CAS  Google Scholar 

  47. Lin CS, Xin ZC, Deng CH et al (2010) Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol 25:807–815

    PubMed  Google Scholar 

  48. Schäffler A, Büchler C (2007) Concise review: adipose tissue-derived stromal cells – basic and clinical implications for novel cell-based therapies. Stem Cells 25:818–827

    PubMed  Google Scholar 

  49. Rangappa S, Fen C, Lee EH et al (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779

    PubMed  Google Scholar 

  50. Planat-Benard V, Silvestre JS, Cousin B et al (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663

    PubMed  Google Scholar 

  51. Suga H, Eto H, Aoi N et al (2010) Adipose tissue remodeling under ischemia: death of adipocytes and activation of stem/progenitor cells. Plast Reconstr Surg 126:1911–1923

    PubMed  CAS  Google Scholar 

  52. Oh JS, Kim KN, An SS et al (2010) Co-transplantation of Mouse Neural Stem Sells (mNSCs) with Adipose Tissue-derived Mesenchymal Stem Sells Improves mNSC Survival in a Rat Spinal Cord Injury Model. Cell Transplant. DOI: 10.3727/096368910X539083

  53. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    PubMed  CAS  Google Scholar 

  54. Kalka C, Masuda H, Takahashi T et al (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 97:3422–3427

    PubMed  CAS  Google Scholar 

  55. Stamm C, Westphal B, Kleine HD et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46

    PubMed  Google Scholar 

  56. Werner N, Wassmann S, Ahlers P et al (2007) Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease. Basic Res Cardiol 102:565–571

    PubMed  Google Scholar 

  57. Hill JM, Zalos G, Halcox JP et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    PubMed  Google Scholar 

  58. Werner N, Kosiol S, Schiegl T et al (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007

    PubMed  CAS  Google Scholar 

  59. Yerebakan C, Kaminski A, Liebold A, Steinhoff G (2007) Safety of intramyocardial stem cell therapy for the ischemic myocardium: results of the Rostock trial after 5-year follow-up. Cell Transplant 16:935–940

    PubMed  Google Scholar 

  60. Abdel-Latif A, Bolli R, Tleyjeh IM et al (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167:989–997

    PubMed  Google Scholar 

  61. Schächinger V, Erbs S, Elsässer A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221

    PubMed  Google Scholar 

  62. Stamm C, Kleine HD, Choi YH et al (2007) Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg 133:717–725

    PubMed  Google Scholar 

  63. Kajstura J, Rota M, Whang B et al (2005) Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 96:127–137

    PubMed  CAS  Google Scholar 

  64. Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    PubMed  CAS  Google Scholar 

  65. Chien KR (2006) Lost and found: cardiac stem cell therapy revisited. J Clin Invest 116:1838–1840

    PubMed  CAS  Google Scholar 

  66. Klopsch C, Furlani D, Gaebel R et al (2009) Intracardiac injection of erythropoietin induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. J Cell Mol Med 13:664–679

    PubMed  CAS  Google Scholar 

  67. Stein A, Knodler M, Makowski M et al (2010) Local erythropoietin and endothelial progenitor cells improve regional cardiac function in acute myocardial infarction. BMC Cardiovasc Disord 10:43

    PubMed  Google Scholar 

  68. Ward MR, Stewart DJ (2008) Erythropoietin and mesenchymal stromal cells in angiogenesis and myocardial regeneration: one plus one equals three? Cardiovasc Res 79:357–359

    PubMed  CAS  Google Scholar 

  69. Wang W, Li W, Ong LL et al (2010) Localized SDF-1alpha gene release mediated by collagen substrate induces CD117 stem cells homing. J Cell Mol Med 14:392–402

    PubMed  CAS  Google Scholar 

  70. Wang W, Li W, Ou L et al (2010) Polyethylenimine-mediated gene delivery into human bone marrow mesenchymal stem cells from patients. J Cell Mol Med. DOI: 10.1111/j.1582–4934.2010.01130.x

  71. Kern S, Eichler H, Stoeve J et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    PubMed  CAS  Google Scholar 

  72. Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85:1373–1416

    PubMed  CAS  Google Scholar 

  73. Oswald J, Boxberger S, Jørgensen B et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384

    PubMed  Google Scholar 

  74. Rangappa S, Entwistle JW, Wechsler AS, Kresh JY (2003) Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg 126:124–132

    PubMed  CAS  Google Scholar 

  75. Hakuno D, Fukuda K, Makino S et al (2002) Bone marrow-derived regenerated cardiomyocytes (CMG cells) express functional adrenergic and muscarinic receptors. Circulation 105:380–386

    PubMed  CAS  Google Scholar 

  76. Zhang FB, Li L, Fang B et al (2005) Passage-restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun 336:784–792

    PubMed  CAS  Google Scholar 

  77. Rosca AM, Burlacu A (2010) The effect of 5-azacytidine: evidence for alteration of the multipotent ability of mesenchymal stem cells. Stem Cells Dev. DOI:10.1089/scd.2010.0433

  78. Huang XP, Sun Z, Miyagi Y et al (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122:2419–2429

    PubMed  CAS  Google Scholar 

  79. Furlani D, Ugurlucan M, Ong L et al (2009) Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc Res 77:370–376

    PubMed  CAS  Google Scholar 

  80. Plotnikov AN, Shlapakova I, Szabolcs MJ et al (2007) Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation 116:706–713

    PubMed  Google Scholar 

  81. Yang XJ, Zhou YF, Li HX et al (2008) Mesenchymal stem cells as a gene delivery system to create biological pacemaker cells in vitro. J Int Med Res 36:1049–1055

    PubMed  CAS  Google Scholar 

  82. Menasché P (2007) Skeletal myoblasts as a therapeutic agent. Prog Cardiovasc Dis 50:7–17

    PubMed  Google Scholar 

  83. Taylor DA, Atkins BZ, Hungspreugs P et al (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4:929–933

    PubMed  CAS  Google Scholar 

  84. Pouly J, Hagège AA, Vilquin JT et al (2004) Does the functional efficacy of skeletal myoblast transplantation extend to nonischemic cardiomyopathy? Circulation 110:1626–1631

    PubMed  Google Scholar 

  85. Choi YH, Stamm C, Hammer PE et al (2006) Cardiac conduction through engineered tissue. Am J Pathol 169:72–85

    PubMed  CAS  Google Scholar 

  86. Anversa P, Kajstura J, Leri A, Bolli R (2006) Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113:1451–1463

    PubMed  Google Scholar 

  87. Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    PubMed  CAS  Google Scholar 

  88. Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    PubMed  CAS  Google Scholar 

  89. Bearzi C, Rota M, Hosoda T et al (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104:14068–14073

    PubMed  CAS  Google Scholar 

  90. Gäbel R, Klopsch C, Furlani D et al (2009) Single high-dose intramyocardial administration of erythropoietin promotes early intracardiac proliferation, proves safety and restores cardiac performance after myocardial infarction in rats. Interact Cardiovasc Thorac Surg 9:20–25

    PubMed  Google Scholar 

  91. Rossini A, Zacheo A, Mocini D et al (2008) HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells. J Mol Cell Cardiol 44:683–693

    PubMed  CAS  Google Scholar 

  92. Madonna R, Shelat H, Xue Q et al (2009) Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-alpha. Exp Cell Res 315:2921–2928

    PubMed  CAS  Google Scholar 

  93. Kaminski A, Ma N, Donndorf P et al (2008) Endothelial NOS is required for SDF-1alpha/CXCR4-mediated peripheral endothelial adhesion of c-kit+ bone marrow stem cells. Lab Invest 88:58–69

    PubMed  CAS  Google Scholar 

  94. Steinhoff G, Stock U, Karim N et al (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102:III50–III55

    PubMed  CAS  Google Scholar 

  95. Rabkin-Aikawa E, Farber M, Aikawa M, Schoen FJ (2004) Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J Heart Valve Dis 13:841–847

    PubMed  Google Scholar 

  96. Merryman WD, Liao J, Parekh A et al (2007) Differences in tissue-remodeling potential of aortic and pulmonary heart valve interstitial cells. Tissue Eng 13:2281–2289

    PubMed  Google Scholar 

  97. Simon A, Wilhelmi M, Steinhoff G et al (1998) Cardiac valve endothelial cells: relevance in the long-term function of biologic valve prostheses. J Thorac Cardiovasc Surg 116:609–616

    PubMed  CAS  Google Scholar 

  98. Stamm C, Khosravi A, Grabow N et al (2004) Biomatrix/polymer composite material for heart valve tissue engineering. Ann Thorac Surg 78:2084–2092

    PubMed  Google Scholar 

  99. Grabow N, Schmohl K, Khosravi A et al (2004) Mechanical and structural properties of a novel hybrid heart valve scaffold for tissue engineering. Artif Organs 28:971–979

    PubMed  CAS  Google Scholar 

  100. Bader A, Steinhoff G, Strobl K et al (2000) Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation 70:7–14

    PubMed  CAS  Google Scholar 

  101. Zimmermann WH, Melnychenko I, Wasmeier G et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458

    PubMed  CAS  Google Scholar 

  102. Matsubayashi K, Fedak PW, Mickle DA et al (2003) Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation 108:II219–II225

    PubMed  Google Scholar 

  103. Bader A, Schilling T, Teebken OE et al (1998) Tissue engineering of heart valves – human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 14:279–284

    PubMed  CAS  Google Scholar 

  104. Tan MY, Zhi W, Wei RQ et al (2009) Repair of infarcted myocardium using mesenchymal stem cell seeded small intestinal submucosa in rabbits. Biomaterials 30:3234–3240

    PubMed  CAS  Google Scholar 

  105. Lutter G, Metzner A, Jahnke T et al (2010) Percutaneous tissue-engineered pulmonary valved stent implantation. Ann Thorac Surg 89:259–263

    PubMed  Google Scholar 

  106. Herring M, Gardner A, Glover J (1979) Seeding endothelium onto canine arterial prostheses. The effects of graft design. Arch Surg 114:679–682

    PubMed  CAS  Google Scholar 

  107. Graham LM, Burkel WE, Ford JW et al (1982) Expanded polytetrafluoroethylene vascular prostheses seeded with enzymatically derived and cultured canine endothelial cells. Surgery 91:550–559

    PubMed  CAS  Google Scholar 

  108. Riha GM, Lin PH, Lumsden AB et al (2005) Review: application of stem cells for vascular tissue engineering. Tissue Eng 11:1535–1552

    PubMed  CAS  Google Scholar 

  109. Flanagan TC, Sachweh JS, Frese J et al (2009) In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng Part A 15:2965–2976

    PubMed  CAS  Google Scholar 

  110. Kaminski A, Klopsch C, Mark P et al (2010) Autologous valve replacement – CD133+ stem cell-plus-fibrin composite based sprayed cell seeding for intra-operative heart valve tissue engineering, Tissue Eng C. DOI:10.1089/ten.tec.2010.0051

  111. Yildirim Y, Naito H, Didié M et al (2007) Development of a biological ventricular assist device: preliminary data from a small animal model. Circulation 116:I16–23

    PubMed  Google Scholar 

  112. Zimmermann WH, Eschenhagen T (2007) Embryonic stem cells for cardiac muscle engineering. Trends Cardiovasc Med 17:134–140

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Steinhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klopsch, C., Donndorf, P., Kaminski, A. et al. Zellquellen für kardiovaskuläres Tissue Engineering. Chirurg 82, 295–302 (2011). https://doi.org/10.1007/s00104-010-2030-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-010-2030-3

Schlüsselwörter

Keywords

Navigation