Advertisement

Der Chirurg

, Volume 81, Issue 5, pp 441–446 | Cite as

Die rekonstruktive Sequenz des 21. Jahrhunderts

Ein rekonstruktives Uhrwerk
  • K. Knobloch
  • P.M. Vogt
Übersichten

Zusammenfassung

Mathes und Nahai schlugen 1982 die konventionelle rekonstruktive Leiter zur Deckung von Weichteildefekten beginnend mit der Primär- bzw. Sekundärnaht, gefolgt von der autologen Hauttransplantation, den regionalen Lappenplastiken, der Gewebeexpansion und schließlich den freien mikrovaskulär angeschlossenen Lappenplastiken vor. Trotz enormer Fortschritte auf jeder dieser rekonstruktiven Stufen gibt es klinische Situationen, die nicht adäquat mit diesen derzeitigen rekonstruktiven Maßnahmen adressiert werden können. Neue rekonstruktive Möglichkeiten ergeben sich durch die technologische Verbesserung in den Bereichen der Transplantationsmedizin, der Robotik und des „tissue engineering“. Die „composite tissue allotransplantation“ (CTA) von Teilen des Gesichts oder von ein- oder beidseitigen Unter- und Oberarmen ist ein vergleichsweise junges Gebiet der Transplantationsmedizin. Die ersten klinischen Ergebnisse sind im Vergleich zu den ersten Berichten der Organtransplantation seinerzeit ermutigend, wenngleich die kurz-, mittel- und langfristigen Probleme beispielsweise der Tumorinduktion durch die notwendige Immunsuppression sowie die chronische Abstoßung klar hervorgehoben müssen. Dies spielt insofern eine nicht unerhebliche Rolle, als die CTA gewöhnlich nicht lebensnotwendige Gewebekombinationen darstellen. Die Robotik ist ein weiteres neu zu erschließendes Feld, welches durch Operationssysteme wie das Da-Vinci-System für den Operateur oder das Penelope-System als Operationsassistenzroboter in der Chirurgie geprüft wird. Auch die mikrochirurgische Anastomosierung mit dem Da-Vinci-System ist beschrieben, wenngleich der zeitliche Aufwand der Bereitstellung derzeit noch erheblich ist. Die Regeneration und das Tissue Engineering können auch aus rekonstruktiver Sicht enorme Relevanz erlangen. Die stammzellbasierte Fetttransplantation kann neben Volumeneffekten bei Konturdefekten auch die Hautqualität verbessern im Sinne einer Regeneration. Eingedenk dieser Fortschritte schlagen wir vor, dass die rekonstruktive Sequenz des 21. Jahrhunderts diesen Entwicklungen Rechnung trägt. Wir sehen die CTA, die Robotik, und die Regeneration/Tissue Engineering als zukünftige integrale Zahnräder eines rekonstruktiven Uhrwerks des 21. Jahrhunderts an, in dem gerade die Kombination unterschiedlicher rekonstruktiver Maßnahmen neue Möglichkeiten der Wiederherstellungschirurgie eröffnen kann mit dem Patienten im Zentrum der Bemühungen.

Schlüsselwörter

Rekonstruktion Tissue engineering Composite tissue allotransplantation Robotik 

The reconstructive sequence in the 21st century

A reconstructive clockwork

Abstract

Mathes and Nahai introduced the conventional reconstructive ladder in 1982 to address tissue defects starting with primary and secondary closure of wounds followed by autologous skin grafting. Regional and local pedicled flaps, tissue expansion and free tissue transfer were further steps. Despite enormous achievements and refinements in these techniques, clinical situations and problems occur beyond the scope of these conventional reconstructive measures. Composite tissue allotransplantation (CTA) of partial faces or of unilateral or bilateral forearms and upper arms, are a novel part of transplantation medicine. The initially reported clinical results are encouraging, especially in light of the initial clinical reports of organ transplantation. However, short and long term problems such as potential tumor induction by immunosuppression and chronic rejection must be taken into consideration. Given the fact that patients receiving CTA have already undergone various reconstructive procedures before, patients often gain tremendous improvement in the quality of life. Robots such as the Da Vinci system for surgeons and the Penelope assistant robot have found their way into the surgical routine. While even microsurgical anastomosis has been accomplished using the Da Vinci system, the total amount of time and resources spent is beyond being practical at present. Regeneration and tissue engineering are of distinct interest in reconstructive surgery. Adipose-derived stem cell transfer is able not only to improve contour defects by volume effects, but also to improve the quality of the overlying skin. Therefore we would propose that these novel techniques, CTA, robotics, regeneration and tissue engineering should be considered as potential future integral cogs in the reconstructive mechanism for the 21st century with the patient being at the centre of the reconstructive efforts.

Keywords

Reconstruction Tissue engineering Composite tissue allotransplantation Robotics 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Mathes S, Nahai F (1982) Clinical application for muscle and musculocutaneous flaps. Mosby, St. Louis, 3Google Scholar
  2. 2.
    Padgett EC (1932) Is iso-skin grafting practicable? South Med J 25:895Google Scholar
  3. 3.
    Brown JB (1937) Homografting of skin. Report of success in identical twins. Surgery 1:559Google Scholar
  4. 4.
    Brown JB, McDowell F (1942) Epithelial healing and the transplantation of skin. Ann Surg 115:1166–1177CrossRefPubMedGoogle Scholar
  5. 5.
    Bhat S, Shah A, Burd A (2009) The role of freestyle perforator-based pedicled flaps in reconstruction of delayed traumatic defects. Ann Plast Surg 63(1):45–52CrossRefPubMedGoogle Scholar
  6. 6.
    Hamdi M, Van Lanuyt K, Monstrey S, Blondeel P (2004) Pedicled perforator flaps in breast reconstruction: a new concept. Br J Plast Surg 57(6):531–539CrossRefPubMedGoogle Scholar
  7. 7.
    Bostwick J 3rd, Nahai F, Wallace JG, Vasconez LO (1979) Sixty latissimus dorsi flaps. Plast Reconstr Surg 63(1):31–41PubMedCrossRefGoogle Scholar
  8. 8.
    Watson JS, Craig RD, Orton CI (1979) The free latissimus dorsi myocutaneous flap. Plast Reconstr Surg 64(3):299–305CrossRefPubMedGoogle Scholar
  9. 9.
    Godina M (1979) Preferential use of end-to-side arterial anastomoses in free flap transfers. Plast Reconstr Surg 64(5):673–682CrossRefPubMedGoogle Scholar
  10. 10.
    Hamilton SG, Morrison WA (1982) The scapular free flap. Br J Plast Surg 35(1):2–7CrossRefPubMedGoogle Scholar
  11. 11.
    Nassif TM, Vidal L, Bovet JLO, Baudet J (1982) The parascapular flap: a new cutaneous microsurgical free flap. Plast Reconstr Surg 69(4):591–600CrossRefPubMedGoogle Scholar
  12. 12.
    Schmidt DR, Robson MC (1982) One-stage composite reconstruction using the latissimus myoosteocutaneous free flap. Am J Surg 144(4):470–472CrossRefPubMedGoogle Scholar
  13. 13.
    Song YG, Chen GZ, Song YL (1984) The free thigh flap: a new free flap concept based on the septocutaneous artery. Br J Plast Surg 37(2):149–159CrossRefPubMedGoogle Scholar
  14. 14.
    Koshima I, Soeda S, Yamasaki M, Kyou J (1988) The free or pedicled anteromedial thigh flap. Ann Plast Surg 21(5):480–485CrossRefPubMedGoogle Scholar
  15. 15.
    Koshima I, Soeda S (1989) Inferior epigastric artery skin flaps without rectus abdominis muscle. Br J Plast Surg 42(6):645–648CrossRefPubMedGoogle Scholar
  16. 16.
    Itoh Y, Arai K (1993) The deep inferior epigastric artery free skin flap: anatomic study and clinical application. Plast Reconstr Surg 91(5):853–863PubMedGoogle Scholar
  17. 17.
    Blondeel PN, Boeckx WD (1994) Refinements in free flap breast reconstruction: the free bilateral deep inferior epigastric perforator flap anastomosed to the internal mammary artery. Br J Plast Surg 47(7):495–501CrossRefPubMedGoogle Scholar
  18. 18.
    Saint-Cyr M, Wong C, Schaverien M et al (2009) The perforasome theory: vascular anatomy and clinical implications. Plast Reconstr Surg 124:1529–1544CrossRefPubMedGoogle Scholar
  19. 19.
    Massey MF, Spiegel AJ, Levine JL et al (2009) Perforator flaps: recent experience, current trends and future directions based on 3974 microsurgical breast reconstructions. Plast Reconstr Surg 124:737–751CrossRefPubMedGoogle Scholar
  20. 20.
    Masia J, Kosutic D, Clavero JA et al (2009) Preoperative computed tomographic angiogram for deep inferior epigastric artery perforator flap breast reconstruction. J Reconstr Microsurg [Epub ahead of print]Google Scholar
  21. 21.
    Rozen WM, Anavekar NS, Ashton MW et al (2008) Does the preoperative imaging of perforators with CT angiography improve operative outcomes in breast reconstruction? Microsurgery 28(7):516–523CrossRefPubMedGoogle Scholar
  22. 22.
    Knobloch K, Reuss E, Gohritz A et al (2009) A survey of preoperative perforator mapping in perforator flap surgery. Handchir Mikrochir Plast Chir (Epub ahead of print)Google Scholar
  23. 23.
    Gottlieb LJ, Krieger LM (1994) From the reconstructive ladder to the reconstructive elevator. Plast Reconstr Surg 93(7):1503–1504CrossRefPubMedGoogle Scholar
  24. 24.
    Bennett N, Choudhary S (2000) Why climb a ladder when you can take the elevator? Plast Reconstr Surg 105(6):2266CrossRefPubMedGoogle Scholar
  25. 25.
    Brandacher G, Ninkovic M, Piza-Katzer H et al (2009) The Innsbruck hand transplant program: update at 8 years after the first transplant. Transplant Proc 41(2):491–494CrossRefPubMedGoogle Scholar
  26. 26.
    Knobloch K, Rennekampff HO, Meyer-Marcotty M et al (2009) Organ transplantation, composite tissue allotransplantation and plastic surgery. Chirurg 80(6):519–526CrossRefPubMedGoogle Scholar
  27. 27.
    Lanzetta M, Petruzzo P, Dubernard JM et al (2007) Second report (1998–2006) of the International registry of hand and composite tissue transplantation. Transpl Immunol 18(1):1–6CrossRefPubMedGoogle Scholar
  28. 28.
    Gordon CR, Siemionow M, Papay F et al (2009) The World’s experience with facial transplantation: What have we learned thus far? Ann Plast Surg (Epub ahead of print) PMID:19806039Google Scholar
  29. 29.
    Knobloch K, Vogt PM, Rennekampff HO (2009) Composite tissue allotransplantation (CTA): organ or tissue transplantation? Handchir Mikrochir Plast Chir 41(4):205–209CrossRefPubMedGoogle Scholar
  30. 30.
    Siemionow M, Ozer K, Siemionow W, Lister G (2000) Robotic assistance in microsurgery. J Reconstr Microsurg 16(8):643–649CrossRefPubMedGoogle Scholar
  31. 31.
    Karamanoukian RL, Bui T, McConnell MP et al (2006) Transfer of training in robotic-assisted microvascular surgery. Ann Plast Surg 57(6):662–665CrossRefPubMedGoogle Scholar
  32. 32.
    Katz RD, Tayler JA, Rosson GD et al (2006) Robotics in plastic and reconstructive surgery: use of a telemanipulator slave robot to perform microvascular anastomoses. J Reconstr Microsurg 22(1):53–57CrossRefPubMedGoogle Scholar
  33. 33.
    Boyd B, Umansky J, Samson M et al (2006) Robot harvest of internal mammary vessels in breast reconstruction. J Reconstr Microsurg 22(4):261–266CrossRefPubMedGoogle Scholar
  34. 34.
    Liverneaux P, Nectoux E, Taleb C (2009) The future of robotics in hand surgery. Chir Main 28(5):278–285CrossRefPubMedGoogle Scholar
  35. 35.
    Czerny V (1895) Drei plastische Operationen. 3. Plastischer Ersatz der Brustdrüse durch ein Lipom. Arch f Klin Chir 50:544–550Google Scholar
  36. 36.
    Holländer E (1910) Über einen Fall von fortschreitendem Schwund des Fettgewebes und seinen kosmetischen Ersatz durch Menschenfett. Münch Med Wochenschr 57:1794–1795Google Scholar
  37. 37.
    Lexer E (1919) Fettgewebsverpflanzung. In: Lexer E (Hrsg) Die freien Transplantationen. Teil 1. Enke, Stuttgart, S 264–547Google Scholar
  38. 38.
    Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228CrossRefPubMedGoogle Scholar
  39. 39.
    Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295CrossRefPubMedGoogle Scholar
  40. 40.
    Dragoo JL, Carlson G, McCormick F et al (2007) Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Eng 13(7):1615–1621CrossRefPubMedGoogle Scholar
  41. 41.
    Meliga E, Strem BM, Duckers HJ, Serruys PW (2007) Adipose-derived cells. Cell Transplant 16(9):963–970CrossRefPubMedGoogle Scholar
  42. 42.
    Rigotti G, Marchi A, Galie M et al (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119(5):1409–1422CrossRefPubMedGoogle Scholar
  43. 43.
    Mojallal A, Lequeux C, Shipkow C et al (2009) Improvement of skin quality after fat grafting: clinical observation and an animal study. Plast Reconstr Surg 124:765–774CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Plastische, Hand- und WiederherstellungschirurgieMedizinische Hochschule HannoverHannoverDeutschland

Personalised recommendations