Skip to main content
Log in

Gastrointestinale Stromatumoren

Diagnose und Malignitätseinschätzung

Gastrointestinal stromal tumors

Diagnosis and estimating aggressiveness

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

In erster Linie muss ein gastrointestinaler Stromatumor (GIST) in Erwägung gezogen werden, wenn ein mesenchymaler Tumor im Gastrointestinaltrakt gefunden wird, wobei diese Tumoren am häufigsten im Magen vorkommen. Die Diagnose beruht in der täglichen Praxis auf histologischen (Zellbild und Gewebsarchitektur) sowie immunhistochemischen Merkmalen (zelluläre CD117- und oft CD34-Positivität). Die Expression von CD117 ist Ausdruck einer Aktivierung der Typ-III-Rezeptor-Tyrosinkinase KIT, welcher eine aktivierende Mutation des KIT-Gens zugrunde liegt. Bei etwa 5% der Fälle ist alternativ eine Mutation des PDGF-Rezeptor-α-Gens mit Expression des entsprechenden Wachstumsfaktorrezeptors nachzuweisen. Die Einschätzung der Dignität bei einem GIST ist schwierig und im Einzelfall mit Unsicherheiten behaftet. Eine Malignitätsgraduierung entsprechend den Kriterien bei Weichgewebstumoren ist nicht möglich. Es besteht heute aber allgemeiner Konsensus darüber, dass die wichtigsten Einzelparameter für die prognostische Bewertung der Tumoren ihre Größe und die Zahl der Mitosen sind, neuerdings wird überdies die Tumorlokalisation berücksichtigt. Es hat sich in den letzten Jahren gezeigt, dass auch die Mutationsanalyse Beiträge zur Bestimmung der Tumoraggressivität bzw. Metastasenwahrscheinlichkeit und Therapieansprechbarkeit leisten kann.

Abstract

A diagnosis of gastrointestinal stromal tumor must be considered if a mesenchymal tumor is localized in the gastrointestinal tract, especially in the stomach. In daily practice diagnosis is based on the histology (cellular features and histologic architecture) and immunohistochemistry (cellular positivity with antibodies to CD117 and often to CD34). Expression of CD117 indicates the autoactivation of a type-III-receptor tyrosine kinase mediated by mutation of the KIT gene. This is lacking in the roughly 5% of cases which instead show a mutation of the PDGF receptor alpha gene. The estimation of dignity is difficult and can be uncertain in some cases. A malignancy grading according to the procedure in soft tissue tumors is not possible. Nowadays, however, the general consensus is that size of the tumor and number of mitoses are the most important criteria for appraising tumor aggressiveness and risk of metastasis. The tumor localization was later added to these criteria. Recent years have shown that mutation analysis can also provide information for judging tumor agressiveness and predicting possible metastasis and response to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Agaimy A, Wünsch PH, Hofstaedter F et al. (2007) Minute gastric sclerosing stromal tumors (GIST tumorlets) are common in adults and frequently show c-KIT mutations. Am J Surg Pathol 31: 113–120

    Article  PubMed  Google Scholar 

  2. Antonescu C, Sommer G, Sarran L et al. (2003) Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and clinical correlates of 120 gastrointestinal stromal tumors. Clin Cancer Res 9: 3329–3337

    PubMed  CAS  Google Scholar 

  3. Carney JA (1999) Gastric stromal sarcoma, pulmonary chondroma, and extra-adrenal paraganglioma (Carney triad): natural history, adrenocortical component, and possible familial occurrence. Mayo Clin Proc 74: 543–552

    PubMed  CAS  Google Scholar 

  4. Chan JKC (1999) Mesenchymal tumors of the gastrointestinal tract: a paradise for acronyms (STUMP, GIST, GANT, and now GIPACT), implication of c-kit in genesis, and yet another of the many emerging roles of the interstitial cell of Cajal in the pathogenesis of gastrointestinal disease. Adv Anat Pathol 6: 19–40

    Article  PubMed  CAS  Google Scholar 

  5. Chetty R (2008) Small and microscopically detected gastrointestinal stromal tumors: an overview. Pathology 40: 9–12

    Article  PubMed  Google Scholar 

  6. Chompret A, Kannengiesser C, Barrois M (2004) PDGFA germline mutation in a familiy with multiple cases of gastrointestinal stromal tumors. Gastroenterology 126: 318–321

    Article  PubMed  CAS  Google Scholar 

  7. Emory TS, Sobin LH, Lukes L et al. (1999) Prognosis of gastrointestinal smooth muscle (stromal) tumors – dependence of anatomic site. Am J Surg Pathol 23: 82–87

    Article  PubMed  CAS  Google Scholar 

  8. Espinosa I, Lee CH, Kim MK et al. (2008) A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am J Surg Pathol 32: 210–218

    PubMed  Google Scholar 

  9. Fletcher CDM, Berman JJ, Corless C et al. (2002) Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum Pathol 33: 459–465

    Article  PubMed  Google Scholar 

  10. Fuller CE, Williams GT (1991) Gastrointestinal manifestations of type I neurofibromatosis (von Recklingshausen’s disease). Histopathology 19: 1–11

    Article  PubMed  CAS  Google Scholar 

  11. Hirota S, Isozaki K, Moriyama Y et al. (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279: 577–580

    Article  PubMed  CAS  Google Scholar 

  12. Hirota S, Nishida T, Isozaki K (1998) Familial gastrointestinal stromal tumors with germline mutation of KIT gene. Nat Genet 19: 323–324

    Article  PubMed  CAS  Google Scholar 

  13. Kindblom LG, Remotti HE, Aldenborg F, Meis-Kindblom JM (1998) Gastrointestinal pacemaker cell tumor (GIPACT) – gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 152: 1259–1269

    PubMed  CAS  Google Scholar 

  14. Lee JR, Joshi V, Griffin JW et al. (2001) Gastrointestinal autonomic nerve tumor – immunohistochemical and molecular identity with gastrointestinal stromal tumor. Am J Surg Pathol 25: 979–987

    Article  PubMed  CAS  Google Scholar 

  15. Medeiros P, Corless CL, Duensing A et al. (2004) Kit-negative gastrointestinal stromal tumors. Proof of concept and therapeutic implications. Am J Surg Pathol 28: 889–894

    Article  PubMed  Google Scholar 

  16. Miettinen M, Lasota J (2001) Gastrointestinal stromal tumors – definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Arch 438: 1–12

    Article  PubMed  CAS  Google Scholar 

  17. Miettinen M, Sobin LH, Lasota J (2005) Gastrointestinal stromal tumors of the stomach: a clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol 29: 52–68

    Article  PubMed  Google Scholar 

  18. Miettinen M, Lasota J (2006) Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 23: 70–83

    Article  PubMed  Google Scholar 

  19. Nishida T, Hirota S (2000) Biological and clinical review of stromal tumors in the gastrointestinal tract. Histol Histopathol 15: 1293–1301

    PubMed  CAS  Google Scholar 

  20. Pauls K, Merkelbach-Bruse S, Thal D et al. (2004) PDGFR and c-kit mutated gastrointestinal stromal tumors (GISTs) are characterized by distinctive histological and immunohistochemical features. Histopathology 46: 166–175

    Article  Google Scholar 

  21. Reith JD, Goldblum JR. Lyles RH, Weiss SW (2000) Extragastrointestinal (soft tissue) stromal tumors: an analysis of 48 cases with emphasis on histologic predictors of outcome. Mod Pathol 13: 577–585

    Article  PubMed  CAS  Google Scholar 

  22. Robinson TL, Sircar K, Hewlett BR et al. (2000) Gastrointestinal stromal tumors may originate from a subset of CD34-positive interstitial cells of Cajal. Am J Pathol 156: 1157–1163

    PubMed  CAS  Google Scholar 

  23. Roggen JFC van, Velthuysen MLF van, Hogendoorn PCW (2001) The histopathological differential diagnosis of gastrointestinal stromal tumors. J Clin Pathol 54: 96–102

    Article  Google Scholar 

  24. Suster S (1996) Gastrointestinal stromal tumors. Semin Diagn Pathol 13: 297–313

    PubMed  CAS  Google Scholar 

  25. Wardelmann E, Büttner R, Merkelbach-Bruse S, Schildhaus HU (2007) Mutation analysis of gastrointestinal stromal tumors: increasing significance for risk assessment and effective targeted therapy. Virchows Arch 451: 743–749

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Katenkamp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katenkamp, D., Katenkamp, K. Gastrointestinale Stromatumoren. Chirurg 79, 625–629 (2008). https://doi.org/10.1007/s00104-008-1525-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-008-1525-7

Schlüsselwörter

Keywords

Navigation