Skip to main content
Log in

Effektormoleküle des angeborenen Immunsystems zur Abwehr von Wundinfektionen

Effector molecules of the innate immune system for treatment of wound infections

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Die Haut ist ein wesentliches Immunorgan des menschlichen Körpers und repräsentiert die wichtigste Barriere zwischen Körper und Umwelt. Als vorderste Verteidigungslinie der Haut gilt das angeborene Immunsystem („innate immune system“), das im Gegensatz zum adaptiven Immunsystem sofort gegen eindringende pathogene Mikroben reagiert. Antimikrobielle Peptide stellen die Basis des phylogenetisch älteren Teils des Immunsystems dar. Neue Studien haben gezeigt, dass eine reduzierte lokale Expression antimikrobieller Peptide ursächlich an der supprimierten Immunantwort und den damit verbundenen höheren Infektionsraten bei Schwerbrandverletzten beteiligt ist. Das Oberflächenepithel besitzt eine wesentliche Funktion bei der Erkennung einer Kolonialisierung durch Mikroorganismen und bei der initialen antimikrobiellen Abwehr.

Abstract

Skin is a substantial immune organ and represents the most important barrier against the potentially hostile environment. Its first line of defense are effector molecules of the innate immune system, which in contrast to the adaptive immune system reacts immediately against penetrating pathogenic microbes. Antimicrobial peptides represent the basis of the phylogenetically oldest part of the immune system. New studies show that reduced local cutaneous expression of antimicrobial peptide in burned skin is involved in the higher incidence of wound infections. The epithelium has an essential function in recognizing colonies of micro-organisms and in initial antimicrobial defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Demling RH, Lalonde C, Fogt F et al. (1989) Effect of increasing oxygen delivery postburn on oxygen consumption and oxidant-induced lipid peroxidation in the adult sheep. Crit Care Med 17: 1025–1030

    Article  PubMed  Google Scholar 

  2. Ren J, Wu S (2006) A burning issue: do sepsis and systemic inflammatory response syndrome (sirs) directly contribute to cardiac dysfunction? Front Biosci 11: 15–22

    Article  PubMed  Google Scholar 

  3. Fox CL Jr, Rappole BW, Stanford W (1969) Control of pseudomonas infection in burns by silver sulfadiazine. Surg Gynecol Obstet 128: 1021–1026

    PubMed  Google Scholar 

  4. Lindberg RB, Moncrief JA, Switzer WE et al. (1965) The successful control of burn wound sepsis. J Trauma 5: 601–616

    PubMed  Google Scholar 

  5. Stone HH (1966) Review of pseudomonas sepsis in thermal burns: verdoglobin determination and gentamicin therapy. Ann Surg 163: 297–305

    Article  PubMed  Google Scholar 

  6. Gorecki P, Schein M, Rucinski JC, Wise L (1999) Antibiotic administration in patients undergoing common surgical procedures in a community teaching hospital: the chaos continues. World J Surg 23: 429–432; discussion 433

    Article  PubMed  Google Scholar 

  7. Allgower M, Schoenenberger GA, Sparkes BG (1995) Burning the largest immune organ. Burns 21: S7–S47

    PubMed  Google Scholar 

  8. Nemes Z, Devreese B, Steinert PM et al. (2004) Cross-linking of ubiquitin, HSP27, parkin, and alpha-synuclein by gamma-glutamyl-epsilon-lysine bonds in Alzheimer’s neurofibrillary tangles. Faseb J 18: 1135–1137

    PubMed  Google Scholar 

  9. Harder J, Schroder JM (2005) Antimicrobial peptides in human skin. Chem Immunol Allergy 86: 22–41

    PubMed  Google Scholar 

  10. Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272: 50–53

    Article  PubMed  Google Scholar 

  11. Lehrer RI, Ganz T (1996) Endogenous vertebrate antibiotics. Defensins, protegrins, and other cysteine-rich antimicrobial peptides. Ann N Y Acad Sci 797: 228–239

    Article  PubMed  Google Scholar 

  12. Beutler B, Hoebe K, Georgel P et al. (2005) Genetic analysis of innate immunity: identification and function of the TIR adapter proteins. Adv Exp Med Biol 560: 29–39

    PubMed  Google Scholar 

  13. Kimbrell DA, Beutler B (2001) The evolution and genetics of innate immunity. Nat Rev Genet 2: 256–267

    Article  PubMed  Google Scholar 

  14. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84: 5449–5453

    Article  PubMed  Google Scholar 

  15. Clark DP, Durell S, Maloy WL, Zasloff M (1994) Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J Biol Chem 269: 10849–10855

    PubMed  Google Scholar 

  16. Steinstraesser L, Oezdogan Y, Wang SC, Steinau HU (2004) Host defense peptides in burns. Burns 30: 619–627

    Article  PubMed  Google Scholar 

  17. Lehrer RI, Ganz T (1999) Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 11: 23–27

    Article  PubMed  Google Scholar 

  18. Hancock RE, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43: 1317–1323

    PubMed  Google Scholar 

  19. Bals R, Wang X, Zasloff M, Wilson JM (1998) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A 95: 9541–9546

    Article  PubMed  Google Scholar 

  20. Gunn JS (2001) Bacterial modification of LPS and resistance to antimicrobial peptides. J Endotoxin Res 7: 57–62

    Article  PubMed  Google Scholar 

  21. Bals R (2000) Epithelial antimicrobial peptides in host defense against infection. Respir Res 1: 141–150

    Article  PubMed  Google Scholar 

  22. Lohner K, Latal A, Lehrer RI, Ganz T (1997) Differential scanning microcalorimetry indicates that human defensin, HNP-2, interacts specifically with biomembrane mimetic systems. Biochemistry 36: 1525–1531

    Article  PubMed  Google Scholar 

  23. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389–395

    Article  PubMed  Google Scholar 

  24. Zhang JY, Demain AL (1990) Purification from Cephalosporium acremonium of the initial enzyme unique to the biosynthesis of penicillins and cephalosporins. Biochem Biophys Res Commun 169: 1145–1152

    Article  PubMed  Google Scholar 

  25. Ganz T, Lehrer RI (1994) Defensins. Curr Opin Immunol 6: 584–589

    Article  PubMed  Google Scholar 

  26. Martin E, Ganz T, Lehrer RI (1995) Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol 58: 128–136

    PubMed  Google Scholar 

  27. Wilson CL, Ouellette AJ, Satchell DP et al. (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286: 113–117

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Steinsträßer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinsträßer, L., Langer, S., Lehnhardt, M. et al. Effektormoleküle des angeborenen Immunsystems zur Abwehr von Wundinfektionen. Chirurg 78, 343–348 (2007). https://doi.org/10.1007/s00104-007-1314-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-007-1314-8

Schlüsselwörter

Keywords

Navigation