Skip to main content

Advertisement

Log in

Langzeitfolgen von Schlaganfällen

Long-term consequences of stroke

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Die Behandlung von Schlaganfällen hat sich in den letzten beiden Jahrzehnten deutlich weiterentwickelt und in einkommensstarken Ländern zu einer Verringerung von Mortalität und Morbidität geführt. Schlaganfälle sind jedoch weiterhin die dritthäufigste Ursache von Sterblichkeit und Behinderung weltweit. Bedeutend bleiben daher neben der Akutbehandlung und Prävention von Risikofaktoren auch die Behandlung der vielfältigen Schlaganfallfolgen, die sich auf Alltag und Lebensqualität der Betroffenen auswirken. Lähmungen und Sprech- und Sprachstörungen beeinträchtigen den Alltag am offensichtlichsten. Weitere Defizite können komplexere motorische, sensible und kognitive Fähigkeiten betreffen. Darüber hinaus leiden Patienten häufig auch unter Angststörungen, Fatigue und Depressionen.

Für motorische Defizite und Sprech- und Sprachstörungen existieren etablierte ergotherapeutische, physiotherapeutische und logopädische Therapieprogramme, sowohl im stationären als auch im ambulanten Bereich. Die Diagnostik und Behandlung von kognitiven Leistungseinschränkungen und Verhaltensstörungen erfolgen fast ausschließlich in der stationären Rehabilitationsphase. Trotz Hinweise auf eine langfristige Beeinträchtigung der Lebensqualität durch kognitive Defizite und Verhaltensstörungen sprechen bisherige Studienergebnisse gegen eine empirische medikamentöse antidepressive Therapie in der stationären Rehabilitation. Sinnvoller hingegen erscheint in der ambulanten Weiterbehandlung eine individuelle patientenzentrierte Beurteilung, ergänzt durch die unterschiedlichen Risiko- und Kompensationsfaktoren für Manifestation und Verlauf von kognitiven Defiziten. Dies kann die präventive und supportive Schlaganfalltherapie weiter verbessern.

Abstract

The treatment of stroke has significantly improved over the past two decades, resulting in reduced mortality and morbidity in high-income countries. However, strokes remain the third leading cause of mortality and disability worldwide. In addition to acute care and the prevention of risk factors, treatment of the various persisting disabilities that impact the daily activities and quality of life of patients also remain important. Motor and language deficits affect everyday life most obviously. Other deficits may involve complex movements, sensory, and cognitive functions. Patients also often suffer from anxiety, fatigue, and depression.

Established ergotherapeutic, physiotherapeutic, and logopedic programs exist for motor and language deficits for in-patient treatment as well as in the ambulatory setting. The diagnosis and treatment of cognitive impairments and behavioral disorders, however, are largely confined to the early rehabilitation phase. Despite indications of a long-term impairment of quality of life due to cognitive deficits and behavioral disorders, previous study results speak against drug-based antidepressant therapy in in-patient rehabilitation. Individual patient-reported outcomes, supported by screening for cognitive deficits and consideration of individual risk factors and coping strategies, could further improve the treatment of stroke and its long-term burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Feigin VL, Stark BA, Johnson CO et al (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet Neurol. https://doi.org/10.1016/S1474-4422(21)00252-0

    Article  PubMed  Google Scholar 

  2. Shah ASV, Lee KK, Pérez JAR et al (2021) Clinical burden, risk factor impact and outcomes following myocardial infarction and stroke: A 25-year individual patient level linkage study. Lancet 7:11–13

    Google Scholar 

  3. Mendelson SJ, Prabhakaran S (2021) Diagnosis and management of transient Ischemic attack and acute ischemic stroke: a review. JAMA 325:1088–1098

    Article  CAS  Google Scholar 

  4. Machline-Carrion MJ, Santucci EV, Damiani LP et al (2019) Effect of a quality improvement intervention on adherence to therapies for patients with acute ischemic stroke and transient ischemic attack: a cluster randomized clinical trial. JAMA Neurol 76:932–941

    Article  Google Scholar 

  5. Rajsic S, Gothe H, Borba HH et al (2019) Economic burden of stroke: a systematic review on post-stroke care. Eur J Health Econ 20:107–134. https://doi.org/10.1007/s10198-018-0984-0

    Article  CAS  PubMed  Google Scholar 

  6. Langhorne P, Coupar F, Pollock A (2009) Motor recovery after stroke: a systematic review. Lancet Neurol 8:741–754. https://doi.org/10.1016/S1474-4422(09)70150-4

    Article  PubMed  Google Scholar 

  7. Chen C, Leys D, Esquenazi A (2013) The interaction between neuropsychological and motor deficits in patients after stroke. Neurology 80:S27–34. https://doi.org/10.1212/WNL.0b013e3182762569

    Article  PubMed  Google Scholar 

  8. Atalan P, Bērziņa G, Sunnerhagen KS (2021) Influence of mobility restrictions on post-stroke pain. Brain Behav 11:1–8

    Article  Google Scholar 

  9. Harrison RA, Field TS (2015) Post stroke pain: identification, assessment, and therapy. Cerebrovasc Dis 39:190–201

    Article  Google Scholar 

  10. Cucchiara B, George DK, Kasner SE et al (2019) Disability after minor stroke and TIA: a secondary analysis of the SOCRATES trial. Neurology 93:E708–E716

    Article  Google Scholar 

  11. Adans-Dester C, Hankov N, O’Brien A et al (2020) Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery. NPJ Digit Med 3:1–10. https://doi.org/10.1038/s41746-020-00328-w

    Article  Google Scholar 

  12. Nolan KJ, Karunakaran KK, Roberts P et al (2021) Utilization of robotic exoskeleton for overground walking in acute and chronic stroke. Front Neurorobot 15:1–10

    Article  Google Scholar 

  13. Soulard J, Huber C, Baillieul S et al (2020) Motor tract integrity predicts walking recovery: a diffusion MRI study in subacute stroke. Neurology 94:e583–e593

    Article  Google Scholar 

  14. Rimmele DL, Frey BM, Cheng B et al (2018) Association of extrapyramidal tracts’ integrity with performance in fine motor skills after stroke. Stroke 49:2928–2932

    Article  Google Scholar 

  15. Flowers HL, Skoretz SA, Silver FL et al (2016) Poststroke aphasia frequency, recovery, and outcomes: a systematic review and meta-analysis. Arch Phys Med Rehabil 97:2188–2201.e8. https://doi.org/10.1016/j.apmr.2016.03.006

    Article  PubMed  Google Scholar 

  16. Lazar RM, Boehme AK (2017) Aphasia as a predictor of stroke outcome. Curr Neurol Neurosci Rep 17:1–5

    Article  Google Scholar 

  17. Ali M, VandenBerg K, Williams LR et al (2021) Predictors of poststroke aphasia recovery: a systematic review-informed individual participant data meta-analysis. Stroke 52:1778–1787

    Article  Google Scholar 

  18. Lazar RM, Antoniello D (2008) Variability in recovery from aphasia. Curr Neurol Neurosci Rep 8:497–502

    Article  Google Scholar 

  19. Iorga M, Higgins J, Caplan D et al (2021) Predicting language recovery in post-stroke aphasia using behavior and functional MRI. Sci Rep 11:1–12. https://doi.org/10.1038/s41598-021-88022-z

    Article  CAS  Google Scholar 

  20. Saur D, Ronneberger O, Kümmerer D et al (2010) Early functional magnetic resonance imaging activations predict language outcome after stroke. Brain 133:1252–1264

    Article  Google Scholar 

  21. Van Criekinge T, Truijen S, Schröder J et al (2019) The effectiveness of trunk training on trunk control, sitting and standing balance and mobility post-stroke: a systematic review and meta-analysis. Clin Rehabil 33:992–1002

    Article  Google Scholar 

  22. Cabanas-Valdés R, Boix-Sala L, Grau-Pellicer M et al (2021) The effectiveness of additional core stability exercises in improving dynamic sitting balance, gait and functional rehabilitation for subacute stroke patients (Core-trial): Study protocol for a randomized controlled trial. Int J Environ Res Public Health 18:1–17

    Google Scholar 

  23. Kannan L, Vora J, Varas-Diaz G et al (2021) Does exercise-based conventional training improve reactive balance control among people with chronic stroke? Brain Sci 11:1–15

    Google Scholar 

  24. Kasner SE (2006) Clinical interpretation and use of stroke scales. Lancet Neurol 5:603–612

    Article  Google Scholar 

  25. Cao Q, Tan CC, Xu W et al (2020) The prevalence of dementia: a systematic review and meta-analysis. J Alzheimers Dis 73:1157–1166

    Article  Google Scholar 

  26. Pendlebury ST, Rothwell PM (2019) Incidence and prevalence of dementia associated with transient ischaemic attack and stroke: analysis of the population-based Oxford vascular study. Lancet Neurol 18:248–258. https://doi.org/10.1016/S1474-4422(18)30442-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. Barbay M, Taillia H, Nédélec-Ciceri C et al (2018) Prevalence of poststroke neurocognitive disorders using national institute of neurological disorders and stroke-Canadian stroke network, VASCOG criteria (vascular behavioral and cognitive disorders), and optimized criteria of cognitive deficit. Stroke 49:1141–1147

    Article  Google Scholar 

  28. Lo JW, Crawford JD, Desmond DW et al (2019) Profile of and risk factors for poststroke cognitive impairment in diverse ethnoregional groups. Neurology 93:E2257–E2271

    Article  Google Scholar 

  29. Shin M, Sohn MK, Lee J et al (2020) Effect of cognitive reserve on risk of cognitive impairment and recovery after stroke: the KOSCO study. Stroke 51:99–107

    Article  Google Scholar 

  30. Hackett ML, Pickles K (2014) Part I: frequency of depression after stroke: an updated systematic review and meta-analysis of observational studies. Int J Stroke 9:1017–1025

    Article  Google Scholar 

  31. Meader N, Moe-Byrne T, Llewellyn A et al (2014) Screening for poststroke major depression: a meta-analysis of diagnostic validity studies. J Neurol Neurosurg Psychiatry 85:198–206

    Article  Google Scholar 

  32. Kutlubaev MA, Hackett ML (2014) Part II: predictors of depression after stroke and impact of depression on stroke outcome: an updated systematic review of observational studies. Int J Stroke 9:1026–1036

    Article  Google Scholar 

  33. Towfighi A, Ovbiagele B, El Husseini N et al (2017) Poststroke depression: a scientific statement for healthcare professionals from the American heart association/American stroke association. Stroke 48:e30–e43

    Article  Google Scholar 

  34. Hankey GJ, Hackett ML, Almeida OP et al (2020) Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial. Lancet Neurol 19:651–660

    Article  Google Scholar 

  35. Lundström E, Isaksson E, Näsman P et al (2020) Safety and efficacy of fluoxetine on functional recovery after acute stroke (EFFECTS): a randomised, double-blind, placebo-controlled trial. Lancet Neurol 19:661–669

    Article  Google Scholar 

  36. Dong L, Williams LS, Brown DL et al (2021) Prevalence and course of depression during the first year after mild to moderate stroke. J Am Heart Assoc 10:1–10

    Article  Google Scholar 

  37. Ayerbe L, Ayis SA, Crichton S et al (2014) Natural history, predictors and associated outcomes of anxiety up to 10 years after stroke: the south london stroke register. Age Ageing 43:542–547

    Article  Google Scholar 

  38. Löwe B, Wahl I, Rose M et al (2010) A 4‑item measure of depression and anxiety : validation and standardization of the patient health questionnaire‑4 (PHQ-4) in the general population. J Affect Disord 122:86–95. https://doi.org/10.1016/j.jad.2009.06.019

    Article  PubMed  Google Scholar 

  39. Cella D, Ph D, Riley W et al (2010) Initial adult health item banks and first wave testing of the patient reported outcomes measurement information system (PROMIS) network. J Clin Epidemiol 63:1179–1194

    Article  Google Scholar 

  40. Katzan IL, Thompson NR, Uchino K et al (2018) The most affected health domains after ischemic stroke. Neurology 90:e1364–e1371

    Article  Google Scholar 

  41. Rimmele DL, Lebherz L, Frese M et al (2020) Health-related quality of life 90 days after stroke assessed by the international consortium for health outcome measurement standard set. Eur J Neurol 27:2508–2516

    Article  CAS  Google Scholar 

  42. Salinas J, Sprinkhuizen SM, Ackerson T et al (2016) An international standard set of patient-centered outcome measures after stroke. Stroke 47:180–186

    Article  Google Scholar 

  43. Prodinger B, Taylor P (2018) Improving quality of care through patient-reported outcome measures (PROms): expert interviews using the NHS PROMs programme and the Swedish quality registers for knee and hip arthroplasty as examples. BMC Health Serv Res 18:1–13

    Article  Google Scholar 

  44. Rimmele DL, Lebherz L, Frese M et al (2019) Outcome evaluation by patient reported outcome measures in stroke clinical practice (EPOS) protocol for a prospective observation and implementation study. Neurol Res Pract 1:28. https://doi.org/10.1186/s42466-019-0034-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Götz Thomalla.

Ethics declarations

Interessenkonflikt

D.L. Rimmele gibt an, dass kein Interessenkonflikt besteht. G. Thomalla hat Honorare erhalten als Berater für Acandis und Stryker sowie als Referent für Acandis, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb/Pfizer, Daiichi Sankyo und Stryker.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rimmele, D.L., Thomalla, G. Langzeitfolgen von Schlaganfällen. Bundesgesundheitsbl 65, 498–502 (2022). https://doi.org/10.1007/s00103-022-03505-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-022-03505-2

Schlüsselwörter

Keywords

Navigation