Anforderungen an die Infektionsprävention bei der medizinischen Versorgung von immunsupprimierten Patienten

Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut

    Literatur

    1. 1.

      Berner R, Sauter S, Duffner U, Brandis M, Niemeyer CM (1998) Bakteriämie-Episoden bei pädiatrisch-onkologischen Patienten, insbesondere durch Streptokokken der Viridans-Gruppe. Klin Padiatr 210(4):256–260

      CAS  PubMed  Google Scholar 

    2. 2.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2015) Infektionsprävention im Rahmen der Pflege und Behandlung von Patienten mit übertragbaren Krankheiten. Bundesgesundheitsbl 58(10):1151–1170

      Google Scholar 

    3. 3.

      Miller HK, Braun TM, Stillwell T et al (2017) Infectious Risk after Allogeneic Hematopoietic Cell Transplantation Complicated by Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant 23(3):522–528

      PubMed  Google Scholar 

    4. 4.

      Harris AC, Young R, Devine S et al (2016) International, Multicenter Standardization of Acute Graft-versus-Host Disease Clinical Data Collection: A Report from the Mount Sinai Acute GVHD International Consortium. Biol Blood Marrow Transplant 22(1):4–10

      PubMed  Google Scholar 

    5. 5.

      Fox N, Freifeld AG (2012) The neutropenic diet reviewed: moving toward a safe food handling approach. Oncol (Williston Park) 26(6):572–575, 580, 582

    6. 6.

      Maia JE, da Cruz LB, Gregianin LJ (2018) Microbiological profile and nutritional quality of a regular diet compared to a neutropenic diet in a pediatric oncology unit. Pediatr Blood Cancer 65(3):e26828

      Google Scholar 

    7. 7.

      Moody KM, Baker RA, Santizo RO et al (2018) A randomized trial of the effectiveness of the neutropenic diet versus food safety guidelines on infection rate in pediatric oncology patients. Pediatr Blood Cancer 65(1):e26711

      Google Scholar 

    8. 8.

      Singer M, Deutschman CS, Seymour CW et al (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315(8):801–810

      CAS  PubMed  PubMed Central  Google Scholar 

    9. 9.

      Kochanek M, Schalk E, von Bergwelt-Baildon M et al (2019) Management of sepsis in neutropenic cancer patients: 2018 guidelines from the Infectious Diseases Working Party (AGIHO) and Intensive Care Working Party (iCHOP) of the German Society of Hematology and Medical Oncology (DGHO). Ann Hematol 98(5):1051–1069

      PubMed  PubMed Central  Google Scholar 

    10. 10.

      Seymour CW, Liu VX, Iwashyna TJ et al (2016) Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315(8):762–774

      CAS  PubMed  PubMed Central  Google Scholar 

    11. 11.

      Stosor V, Zembower TR (Hrsg) (2014) Infectious Complications in Cancer Patients (Cancer Treatment and Research, Vol 161). Springer International Publishing, Cham (CH)

      Google Scholar 

    12. 12.

      Girmenia C, Candoni A, Delia M et al (2019) Infection control in patients with myelodysplastic syndromes who are candidates for active treatment: Expert panel consensus-based recommendations. Blood Rev 34:16–25

      PubMed  Google Scholar 

    13. 13.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2010) Anforderungen an die Hygiene bei der medizinischen Versorgung von immunsupprimierten Patienten. Bundesgesundheitsbl 53(4):357–388

      Google Scholar 

    14. 14.

      Ständige Impfkommision (STIKO) (2005) Hinweise der STIKO zu Impfungen für Patienten mit Immundefizienz. Stand: November 2005. Epid Bull(39):1–12

    15. 15.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2009) Personelle und organisatorische Voraussetzungen zur Prävention nosokomialer Infektionen. Bundesgesundheitsbl 53(9):951–962

      Google Scholar 

    16. 16.

      Rolston KV (2017) Infections in Cancer Patients with Solid Tumors: A Review. Infect Dis Ther 6(1):69–83

      PubMed  PubMed Central  Google Scholar 

    17. 17.

      Avritscher EB, Cooksley CD, Rolston KV et al (2014) Serious postoperative infections following resection of common solid tumors: outcomes, costs, and impact of hospital surgical volume. Support Care Cancer 22(2):527–535

      PubMed  Google Scholar 

    18. 18.

      Sammon J, Trinh VQ, Ravi P et al (2013) Health care-associated infections after major cancer surgery: temporal trends, patterns of care, and effect on mortality. Cancer 119(12):2317–2324

      PubMed  Google Scholar 

    19. 19.

      Sammon JD, Klett DE, Sood A et al (2015) Sepsis after major cancer surgery. J Surg Res 193(2):788–794

      PubMed  Google Scholar 

    20. 20.

      Rolston KVI, Nesher L, Tarrand JT (2014) Current Microbiology of Surgical Site Infections in Patients with Cancer: A Retrospective Review. Infect Dis Ther 3(2):245–256

      PubMed  PubMed Central  Google Scholar 

    21. 21.

      Schreiber PW, Sax H, Wolfensberger A, Clack L, Kuster SP (2018) The preventable proportion of healthcare-associated infections 2005–2016: Systematic review and meta-analysis. Infect Control Hosp Epidemiol 39(11):1277–1295

      PubMed  Google Scholar 

    22. 22.

      Crossnohere NL, Richardson DR, Reinhart C et al (2019) Side effects from acute myeloid leukemia treatment: results from a national survey. Curr Med Res Opin 35(11):1965–1970

      PubMed  Google Scholar 

    23. 23.

      Lyman GH, Michels SL, Reynolds MW, Barron R, Tomic KS, Yu J (2010) Risk of mortality in patients with cancer who experience febrile neutropenia. Cancer 116(23):5555–5563

      PubMed  Google Scholar 

    24. 24.

      Rhee C, Jones TM, Hamad Y et al (2019) Prevalence, Underlying Causes, and Preventability of Sepsis-Associated Mortality in US Acute Care Hospitals. Jama Netw Open 2(2):e187571

      PubMed  PubMed Central  Google Scholar 

    25. 25.

      Pergam SA (2016) Infection Prevention in Transplantation. Curr Infect Dis Rep 18(2):7

      PubMed  PubMed Central  Google Scholar 

    26. 26.

      Tomblyn M, Chiller T, Einsele H et al (2009) Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant 15(10):1143–1238

      CAS  PubMed  PubMed Central  Google Scholar 

    27. 27.

      Ullmann AJ, Schmidt-Hieber M, Bertz H et al (2016) Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016. Ann Hematol 95(9):1435–1455

      PubMed  PubMed Central  Google Scholar 

    28. 28.

      Balletto E, Mikulska M (2015) Bacterial Infections in Hematopoietic Stem Cell Transplant Recipients. Mediterr J Hematol Infect Dis 7(1):e2015045

      PubMed  PubMed Central  Google Scholar 

    29. 29.

      Ariza-Heredia EJ, Chemaly RF (2018) Update on infection control practices in cancer hospitals. CA Cancer J Clin 68(5):340–355

      PubMed  PubMed Central  Google Scholar 

    30. 30.

      Maschmeyer G, Rolston KVI (Hrsg) (2015) Infections in Hematology A clinically oriented, compact, and up-to-date overview on all aspects of infections in hematology patients. Springer, Heidelberg

      Google Scholar 

    31. 31.

      Bennett J, Dolin R, Blaser M (2019) Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9. Aufl. Elsevier, Philadelphia

    32. 32.

      Dunbar A, Tai E, Nielsen DB, Shropshire S, Richardson LC (2014) Preventing infections during cancer treatment: development of an interactive patient education website. Clin J Oncol Nurs 18(4):426–431

      PubMed  PubMed Central  Google Scholar 

    33. 33.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2010) Die Kategorien in der Richtlinie für Krankenhaushygiene und Infektionsprävention – Aktualisierung der Definitionen. Mitteilung der Kommission für Krankenhaushygiene und Infektionsprävention. Bundesgesundheitsbl 53(7):754–756

      Google Scholar 

    34. 34.

      MTD-Verlag GmbH (2016) Medizinprodukte-Betreiberverordnung (MPBetreibV) – Verordnung über das Errichten, Betreiben und Anwenden von Medizinprodukten (Medizinprodukte-Betreiberverordnung – MPBetreibV) in der Neufassung vom 21. August 2002 (BGBl. I S. 3397) zuletzt geändert durch Artikel 1 und 2 der Verordnung vom 27. September 2016 (BGBl. I S. 2203). Gültig seit 1. Januar 2017. https://www.mtd.de/gesundheitssystem/gesetze-verordnungen/medizinprodukte-betreiberverordnung-mpbetreibv. Zugegriffen: 1. Nov. 2020

    35. 35.

      Gudnadottir U, Fritz J, Zerbel S, Bernardo A, Sethi AK, Safdar N (2013) Reducing health care-associated infections: patients want to be engaged and learn about infection prevention. Am J Infect Control 41(11):955–958

      PubMed  Google Scholar 

    36. 36.

      Görig T, Dittmann K, Kramer A, Heidecke C-D, Diedrich S, Hübner N-O (2019) Active involvement of patients and relatives improves subjective adherence to hygienic measures, especially selfreported hand hygiene: Results of the AHOI pilot study. Antimicrob Resist Infect Control 8(1):201

      PubMed  PubMed Central  Google Scholar 

    37. 37.

      Butenko S, Lockwood C, McArthur A (2017) Patient experiences of partnering with healthcare professionals for hand hygiene compliance: a systematic review. JBI Database System Rev Implement Rep 15(6):1645–1670

      PubMed  Google Scholar 

    38. 38.

      Agreli HF, Murphy M, Creedon S et al (2019) Patient involvement in the implementation of infection prevention and control guidelines and associated interventions: a scoping review. BMJ Open 9:e025824

      Google Scholar 

    39. 39.

      Birnbach DJ, Nevo I, Barnes S et al (2012) Do hospital visitors wash their hands? Assessing the use of alcohol-based hand sanitizer in a hospital lobby. Am J Infect Control 40(4):340–343

      PubMed  Google Scholar 

    40. 40.

      Wong MWH, Xu YZ, Bone J, Srigley JA (2020) Impact of patient and visitor hand hygiene interventions at a pediatric hospital: A stepped wedge cluster randomized controlled trial. Am J Infect Control 48(5):511–516

      PubMed  Google Scholar 

    41. 41.

      Srigley JA, Furness CD, Gardam M (2014) Measurement of patient hand hygiene in multiorgan transplant units using a novel technology: an observational study. Infect Control Hosp Epidemiol 35(11):1336–1341

      PubMed  Google Scholar 

    42. 42.

      Gaube S, Fischer P, Windl V, Lermer E (2020) The effect of persuasive messages on hospital visitors’ hand hygiene behavior. Health Psychol 39(6):471–481

      PubMed  Google Scholar 

    43. 43.

      Davis R, Parand A, Pinto A, Buetow S (2015) Systematic review of the effectiveness of strategies to encourage patients to remind healthcare professionals about their hand hygiene. J Hosp Infect 89(3):141–162

      CAS  PubMed  Google Scholar 

    44. 44.

      von Lengerke T, Kröning B, Lange K (2017) Patients’ intention to speak up for health care providers’ hand hygiene in inpatient diabetic foot wound treatment: a cross-sectional survey in diabetes outpatient centres in Lower Saxony, Germany. Psychol Health Med 22(10):1137–1148

      Google Scholar 

    45. 45.

      Han A, Choi JS (2018) Factors influencing infection prevention self-care behaviors in patients with hematologic cancer after discharge. Eur J Oncol Nurs 35:102–106

      PubMed  Google Scholar 

    46. 46.

      Leonard K (2012) A European survey relating to cancer therapy and neutropenic infections: nurse and patient viewpoints. Eur J Oncol Nurs 16(4):380–386

      PubMed  Google Scholar 

    47. 47.

      Yokoe D, Casper C, Dubberke E et al (2009) Safe living after hematopoietic cell transplantation. Bone Marrow Transplant 44(8):509–519

      CAS  PubMed  Google Scholar 

    48. 48.

      Lequilliec N, Raymond R, Vanjak D et al (2017) Practices of infectious control management during neutropenia: A survey from 149 French hospitals. J Mycol Med 27(2):227–231

      CAS  PubMed  Google Scholar 

    49. 49.

      Thom KA, Kleinberg M, Roghmann MC (2013) Infection prevention in the cancer center. Clin Infect Dis 57(4):579–585

      PubMed  PubMed Central  Google Scholar 

    50. 50.

      Okada J, Yamamizu Y, Fukai K (2016) Effectiveness of hand hygiene depends on the patient’s health condition and care environment. Jpn J Nurs Sci 13(4):413–423

      PubMed  Google Scholar 

    51. 51.

      Mody L, Washer LL, Kaye KS et al (2019) Multidrug-resistant Organisms in Hospitals: What Is on Patient Hands and in Their Rooms? Clin Infect Dis 69(11):1837–1844

      PubMed  PubMed Central  Google Scholar 

    52. 52.

      Pittet D, Allegranzi B, Sax H et al (2006) Evidence-based model for hand transmission during patient care and the role of improved practices. Lancet Infect Dis 6(10):641–652

      PubMed  Google Scholar 

    53. 53.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2016) Erratum zu: Händehygiene in Einrichtungen des Gesundheitswesens. Bundesgesundheitsbl 59(11):1503–1504

      Google Scholar 

    54. 54.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2016) Händehygiene in Einrichtungen des Gesundheitswesens. Bundesgesundheitsbl 59(9):1189–1220

    55. 55.

      Reichardt C, Koniger D, Bunte-Schonberger K et al (2013) Three years of national hand hygiene campaign in Germany: what are the key conclusions for clinical practice? J Hosp Infect 83(Suppl 1):S11–S16

      PubMed  Google Scholar 

    56. 56.

      Kampf G, Simon A (2017) Händehygiene bei immunsupprimierten Patienten. In: Kampf G (Hrsg) Kompendium Händehygiene. mhp-Verlag, Wiesbaden, S 266–271

      Google Scholar 

    57. 57.

      Lund BM, O’Brien SJ (2011) The occurrence and prevention of foodborne disease in vulnerable people. Foodborne Pathog Dis 8(9):961–973

      PubMed  PubMed Central  Google Scholar 

    58. 58.

      Evans EW, Redmond EC (2017) An assessment of food safety information provision for UK chemotherapy patients to reduce the risk of foodborne infection. Public Health 153:25–35

      CAS  PubMed  Google Scholar 

    59. 59.

      Evans EW, Redmond EC (2018) Food Safety Knowledge and Self-Reported Food-Handling Practices in Cancer Treatment. Oncol Nurs Forum 45(5):E98–E110

      PubMed  Google Scholar 

    60. 60.

      Stull JW, Stevenson KB (2015) Zoonotic disease risks for immunocompromised and other high-risk clients and staff: promoting safe pet ownership and contact. Vet Clin North Am Small Anim Pract 45(2):377–392, vii

    61. 61.

      Gurry GA, Campion V, Premawardena C et al (2017) High rates of potentially infectious exposures between immunocompromised patients and their companion animals: an unmet need for education. Intern Med J 47(3):333–335

      PubMed  Google Scholar 

    62. 62.

      Hemsworth S, Pizer B (2006) Pet ownership in immunocompromised children—a review of the literature and survey of existing guidelines. Eur J Oncol Nurs 10(2):117–127

      CAS  PubMed  Google Scholar 

    63. 63.

      Laws H-J, Baumann U, Bogdan C et al (2020) Impfen bei Immundefizienz: Anwendungshinweise zu den von der Ständigen Impfkommission empfohlenen Impfungen. (III) Impfen bei hämatologischen und onkologischen Erkrankungen (antineoplastische Therapie, Stammzelltransplantation), Organtransplantation und Asplenie. Bundesgesundheitsbl 63(5):588–644

      Google Scholar 

    64. 64.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2017) Prävention von Infektionen, die von Gefäßkathetern ausgehen. Hinweise zur Implementierung. Informativer Anhang 2 zur Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl 60(2):231–244

      Google Scholar 

    65. 65.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2017) Prävention von Infektionen, die von Gefäßkathetern ausgehen. Teil 1 – Nichtgetunnelte zentralvenöse Katheter Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl 60(2):171–206

      Google Scholar 

    66. 66.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2017) Prävention von Infektionen, die von Gefäßkathetern ausgehen. Teil 2 – Periphervenöse Verweilkanülen und arterielle Katheter Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl 60(2):207–215

      Google Scholar 

    67. 67.

      Hentrich M, Schalk E, Schmidt-Hieber M et al (2014) Central venous catheter-related infections in hematology and oncology: 2012 updated guidelines on diagnosis, management and prevention by the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology. Ann Oncol 25(5):936–947

      CAS  PubMed  Google Scholar 

    68. 68.

      Simon A, Furtwängler R, Laws HJ et al (2018) Evidenzbasierte Empfehlungen zur Anwendung dauerhaft implantierter, zentralvenöser Zugänge in der diatrischen Onkologie im Auftrag der Gesellschaft für pädiatrische Onkologie und Hämatologie. (Bd. 5. vollst. überarb. Aufl.) mhp Verlag, Wiesbaden

    69. 69.

      DeLa Cruz RF, Caillouet B, Guerrero SS (2012) Strategic patient education program to prevent catheter-related bloodstream infection. Clin J Oncol Nurs 16(1):E12–E17

      PubMed  Google Scholar 

    70. 70.

      Moller T, Adamsen L (2010) Hematologic patients’ clinical and psychosocial experiences with implanted long-term central venous catheter: self-management versus professionally controlled care. Cancer Nurs 33(6):426–435

      PubMed  Google Scholar 

    71. 71.

      Moller T, Borregaard N, Tvede M, Adamsen L (2005) Patient education—a strategy for prevention of infections caused by permanent central venous catheters in patients with haematological malignancies: a randomized clinical trial. J Hosp Infect 61(4):330–341

      CAS  PubMed  Google Scholar 

    72. 72.

      Centers for Disease Control and Prevention (CDC), Foundation CDC (2019) 3 Steps Toward Preventing Infections During Cancer Treatment (3 Steps). https://www.preventcancerinfections.org/. Zugegriffen: 1. Nov. 2020

    73. 73.

      Verbund für Angewandte Hygiene e. V. (VAH) (2019) Hygiene-Tipps für das Krankenhaus. Informationen zur Infektionsprävention. https://hygiene-tipps-fuer-kids.de/krankenhaus-projektbeschreibung. Zugegriffen: 1. Nov. 2020

    74. 74.

      Exner M, Simon A, Stiftung Deutsche Leukämie- & Lymphom-Hilfe (Hrsg) (2017) Infektionen? Nein, danke! Wir tun was dagegen! Vermeidung übertragbarer Krankheiten bei Patienten mit Abwehrschwäche im häuslichen Umfeld. https://www.leukaemie-hilfe.de/nc/download-informationen.html?tx_drblob_pi1%5BdownloadUid%5D=631. Zugegriffen: 1. Nov. 2020

    75. 75.

      Hall CB (2000) Nosocomial respiratory syncytial virus infections: the “Cold War” has not ended. Clin Infect Dis 31(2):590–596

      CAS  PubMed  Google Scholar 

    76. 76.

      Libbrecht C, Goutagny MP, Bacchetta J et al (2016) Impact of a change in protected environment on the occurrence of severe bacterial and fungal infections in children undergoing hematopoietic stem cell transplantation. Eur J Haematol 97(1):70–77

      PubMed  Google Scholar 

    77. 77.

      Picheansanthian W, Chotibang J (2015) Glove utilization in the prevention of cross transmission: a systematic review. JBI Database System Rev Implement Rep 13(4):188–230

      PubMed  Google Scholar 

    78. 78.

      (2005) Ständige Impfkommission (STIKO) am. Bull, Bd. 39. Robert Koch Institut, Hinweise zu Impfungen bei Patienten mit Immundefizienz. Epid, S 353–364

    79. 79.

      Niehues T, Bogdan C, Hecht J, Mertens T, Wiese-Posselt M, Zepp F (2017) Impfen bei Immundefizienz. Bundesgesundheitsbl 60(6):674–684

      Google Scholar 

    80. 80.

      Rieger CT, Liss B, Mellinghoff S et al (2018) Anti-infective vaccination strategies in patients with hematologic malignancies or solid tumors—Guideline of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO). Ann Oncol 29(6):1354–1365

      CAS  PubMed  PubMed Central  Google Scholar 

    81. 81.

      El Ramahi R, Freifeld A (2019) Epidemiology, Diagnosis, Treatment, and Prevention of Influenza Infection in Oncology Patients. J Oncol Pract 15(4):177–184

      PubMed  Google Scholar 

    82. 82.

      Price SA, Podczervinski S, MacLeod K, Helbert L, Pergam SA (2019) Understanding influenza vaccination rates and reasons for refusal in caregivers and household contacts of cancer patients. Am J Infect Control 47(4):468–470

      PubMed  Google Scholar 

    83. 83.

      Gesetz für den Schutz vor Masern und zur Stärkung der Impfprävention (Masernschutzgesetz). Vom 10. Februar 2020 (BGBl. Teil I Nr. 6, S. 148–157)

    84. 84.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Impfungen von Personal in medizinischen Einrichtungen in Deutschland: Empfehlung zur Umsetzung der gesetzlichen Regelung in § 23a Infektionsschutzgesetz. Bundesgesundheitsbl (in Vorbereitung)

    85. 85.

      Berg TT, Wicker S (2018) Impfungen für medizinisches Personal. Krankenhaushygiene up2date 13(03), S 331–342

      Google Scholar 

    86. 86.

      Frenzel E, Chemaly RF, Ariza-Heredia E et al (2016) Association of increased influenza vaccination in health care workers with a reduction in nosocomial influenza infections in cancer patients. Am J Infect Control 44(9):1016–1021

      PubMed  Google Scholar 

    87. 87.

      Field RI (2009) Mandatory vaccination of health care workers: whose rights should come first? Pharm Ther 34(11):615–618

      Google Scholar 

    88. 88.

      Maltezou HC, Poland GA (2014) Vaccination policies for healthcare workers in Europe. Vaccine 32(38):4876–4880

      PubMed  Google Scholar 

    89. 89.

      Maltezou HC, Dedoukou X, Vernardaki A et al (2018) Measles in healthcare workers during the ongoing epidemic in Greece, 2017–2018. J Hosp Infect 100(4):e261–e263

      CAS  PubMed  Google Scholar 

    90. 90.

      Maltezou HC, Poland GA (2014) Immunization of healthcare providers: a critical step toward patient safety. Vaccine 32(38):4813

      PubMed  Google Scholar 

    91. 91.

      Montoya A, Schildhouse R, Goyal A et al (2019) How often are health care personnel hands colonized with multidrug-resistant organisms? A systematic review and meta-analysis. Am J Infect Control 47(6):693–703

      PubMed  Google Scholar 

    92. 92.

      Biehl LM, Higgins P, Wille T et al (2019) Impact of single-room contact precautions on hospital-acquisition and transmission of multidrug-resistant Escherichia coli: a prospective multicentre cohort study in haematological and oncological wards. Clin Microbiol Infect 25(8):1013–1020

      CAS  PubMed  Google Scholar 

    93. 93.

      Sodre da Costa LS, Neves VM, Marra AR et al (2013) Measuring hand hygiene compliance in a hematology-oncology unit: a comparative study of methodologies. Am J Infect Control 41(11):997–1000

      PubMed  Google Scholar 

    94. 94.

      Graf K, Ott E, Wolny M et al (2013) Hand hygiene compliance in transplant and other special patient groups: an observational study. Am J Infect Control 41(6):503–508

      PubMed  Google Scholar 

    95. 95.

      Fehling P, Hasenkamp J, Unkel S et al (2019) Effect of gloved hand disinfection on hand hygiene before infection-prone procedures on a stem cell ward. J Hosp Infect 103(3):321–327

      CAS  PubMed  Google Scholar 

    96. 96.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2016) Erratum zu: Infektionsprävention im Rahmen der Pflege und Behandlung von Patienten mit übertragbaren Krankheiten. Bundesgesundheitsbl 59(1):124–129

      Google Scholar 

    97. 97.

      Szymczak JE, Smathers S, Hoegg C, Klieger S, Coffin SE, Sammons JS (2015) Reasons Why Physicians and Advanced Practice Clinicians Work While Sick: A Mixed-Methods Analysis. JAMA Pediatr 169(9):815–821

      PubMed  Google Scholar 

    98. 98.

      Bailey ES, Lobaugh-Jin E, Smith B et al (2019) Molecular epidemiology of an outbreak of human parainfluenza virus 3 among oncology patients. J Hosp Infect 103(3):349–353

      CAS  PubMed  Google Scholar 

    99. 99.

      Chemaly RF, Shah DP, Boeckh MJ (2014) Management of respiratory viral infections in hematopoietic cell transplant recipients and patients with hematologic malignancies. Clin Infect Dis 59(Suppl 5):S344–S351

      CAS  PubMed  PubMed Central  Google Scholar 

    100. 100.

      Campbell AP, Guthrie KA, Englund JA et al (2015) Clinical Outcomes Associated With Respiratory Virus Detection Before Allogeneic Hematopoietic Stem Cell Transplant. Clin Infect Dis 61(2):192–202

      CAS  PubMed  PubMed Central  Google Scholar 

    101. 101.

      Geis S, Prifert C, Weissbrich B et al (2013) Molecular characterization of a respiratory syncytial virus outbreak in a hematology unit in Heidelberg. Germany J Clin Microbiol 51(1):155–162

      CAS  PubMed  Google Scholar 

    102. 102.

      Lehners N, Tabatabai J, Prifert C et al (2016) Long-Term Shedding of Influenza Virus, Parainfluenza Virus, Respiratory Syncytial Virus and Nosocomial Epidemiology in Patients with Hematological Disorders. PLoS ONE 11(2):e0148258

      PubMed  PubMed Central  Google Scholar 

    103. 103.

      von Lilienfeld-Toal M, Berger A, Christopeit M et al (2016) Community acquired respiratory virus infections in cancer patients-Guideline on diagnosis and management by the Infectious Diseases Working Party of the German Society for haematology and Medical Oncology. Eur J Cancer 67:200–212

      Google Scholar 

    104. 104.

      Hijano DR, Maron G, Hayden RT (2018) Respiratory Viral Infections in Patients With Cancer or Undergoing Hematopoietic Cell Transplant. Front Microbiol 9:3097

      PubMed  PubMed Central  Google Scholar 

    105. 105.

      Shah DP, Ghantoji SS, Mulanovich VE, Ariza-Heredia EJ, Chemaly RF (2012) Management of respiratory viral infections in hematopoietic cell transplant recipients. Am J Blood Res 2(4):203–218

      PubMed  PubMed Central  Google Scholar 

    106. 106.

      Shah DP, Shah PK, Azzi JM, El Chaer F, Chemaly RF (2016) Human metapneumovirus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: A systematic review. Cancer Lett 379(1):100–106

      CAS  PubMed  PubMed Central  Google Scholar 

    107. 107.

      Sung L, Alonzo TA, Gerbing RB et al (2008) Respiratory syncytial virus infections in children with acute myeloid leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer 51(6):784–786

      PubMed  PubMed Central  Google Scholar 

    108. 108.

      Khawaja F, Chemaly RF (2019) Respiratory syncytial virus in hematopoietic cell transplant recipients and hematologic malignancy patients. Haematologica 104(7):1322–1331

      CAS  PubMed  PubMed Central  Google Scholar 

    109. 109.

      Sokol KA, De la Vega-Diaz I, Edmondson-Martin K et al (2016) Masks for prevention of respiratory viruses on the BMT unit: results of a quality initiative. Transpl Infect Dis 18(6):965–967

    110. 110.

      Sung AD, Sung JAM, Thomas S et al (2016) Universal Mask Usage for Reduction of Respiratory Viral Infections After Stem Cell Transplant: A Prospective Trial. Clin Infect Dis 63(8):999–1006

      PubMed  PubMed Central  Google Scholar 

    111. 111.

      Chu HY, Englund JA, Podczervinski S et al (2014) Nosocomial transmission of respiratory syncytial virus in an outpatient cancer center. Biol Blood Marrow Transplant 20(6):844–851

      PubMed  PubMed Central  Google Scholar 

    112. 112.

      Huang SS (2019) Chlorhexidine-based decolonization to reduce healthcare-associated infections and multidrug-resistant organisms (MDROs): who, what, where, when, and why? J Hosp Infect 103(3):235–243

      CAS  PubMed  Google Scholar 

    113. 113.

      Messler S, Klare I, Wappler F et al (2019) Reduction of nosocomial bloodstream infections and nosocomial vancomycin-resistant Enterococcus faecium on an intensive care unit after introduction of antiseptic octenidine-based bathing. J Hosp Infect 101(3):264–271

      CAS  PubMed  Google Scholar 

    114. 114.

      Fan CY, Lee WT, Hsu TC et al (2019) Effect of chlorhexidine bathing on colonization or infection with Acinetobacter baumannii: a systematic review and meta-analysis. J Hosp Infect 103(3):284–292

      PubMed  Google Scholar 

    115. 115.

      Huang SS, Septimus E, Kleinman K et al (2019) Chlorhexidine versus routine bathing to prevent multidrug-resistant organisms and all-cause bloodstream infections in general medical and surgical units (ABATE Infection trial): a cluster-randomised trial. Lancet 393(10177):1205–1215

      CAS  PubMed  PubMed Central  Google Scholar 

    116. 116.

      Snarski E, Mank A, Iacobelli S et al (2015) Current practices used for the prevention of central venous catheter-associated infection in hematopoietic stem cell transplantation recipients: a survey from the Infectious Diseases Working Party and Nurses’ Group of EBMT. Transpl Infect Dis 17(4):558–565

      CAS  PubMed  Google Scholar 

    117. 117.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2014) Empfehlungen zur Prävention und Kontrolle von Methicillin-resistenten Staphylococcus aureus-Stämmen (MRSA) in medizinischen und pflegerischen Einrichtungen. Bundesgesundheitsbl 57(6):696–732

      Google Scholar 

    118. 118.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2002) Prävention Gefäßkatheter-assoziierter Infektionen – Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention am Robert Koch-Institut. Bundesgesundheitsbl 25(11):907–924

      Google Scholar 

    119. 119.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2017) Prävention von Infektionen, die von Gefäßkathetern ausgehen. Hinweise zur Blutkulturdiagnostik. Informativer Anhang 1 zur Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl 60(2):216–230

      Google Scholar 

    120. 120.

      Raulji CM, Clay K, Velasco C, Yu LC (2015) Daily Bathing with Chlorhexidine and Its Effects on Nosocomial Infection Rates in Pediatric Oncology Patients. Pediatr Hematol Oncol 32(5):315–321

      CAS  PubMed  Google Scholar 

    121. 121.

      Choi SW, Chang L, Hanauer DA et al (2013) Rapid reduction of central line infections in hospitalized pediatric oncology patients through simple quality improvement methods. Pediatr Blood Cancer 60(2):262–269

      PubMed  Google Scholar 

    122. 122.

      Climo MW, Yokoe DS, Warren DK et al (2013) Effect of daily chlorhexidine bathing on hospital-acquired infection. N Engl J Med 368(6):533–542

      CAS  PubMed  PubMed Central  Google Scholar 

    123. 123.

      Abbas M, Pires D, Peters A et al (2018) Conflicts of interest in infection prevention and control research: no smoke without fire. A narrative review. Intensive Care Med 44(10):1679–1690

      CAS  PubMed  Google Scholar 

    124. 124.

      Heo ST, Kim SJ, Jeong YG, Bae IG, Jin JS, Lee JC (2008) Hospital outbreak of Burkholderia stabilis bacteraemia related to contaminated chlorhexidine in haematological malignancy patients with indwelling catheters. J Hosp Infect 70(3):241–245

      CAS  PubMed  Google Scholar 

    125. 125.

      Gastmeier P, Kampf KP, Behnke M, Geffers C, Schwab F (2016) An observational study of the universal use of octenidine to decrease nosocomial bloodstream infections and MDR organisms. J Antimicrob Chemother 71(9):2569–2576

      CAS  PubMed  Google Scholar 

    126. 126.

      Meissner A, Hasenclever D, Brosteanu O, Chaberny IF (2017) EFFECT of daily antiseptic body wash with octenidine on nosocomial primary bacteraemia and nosocomial multidrug-resistant organisms in intensive care units: design of a multicentre, cluster-randomised, double-blind, cross-over study. BMJ Open 7(11):e016251

      PubMed  PubMed Central  Google Scholar 

    127. 127.

      Becker SL, Berger FK, Feldner SK et al (2018) Outbreak of Burkholderia cepacia complex infections associated with contaminated octenidine mouthwash solution, Germany, August to September 2018. Euro Surveill 23(42):1800540

      PubMed Central  Google Scholar 

    128. 128.

      Huang SS, Septimus E, Hayden MK et al (2016) Effect of body surface decolonisation on bacteriuria and candiduria in intensive care units: an analysis of a cluster-randomised trial. Lancet Infect Dis 16(1):70–79

      PubMed  Google Scholar 

    129. 129.

      Wang EW, Layon AJ (2017) Chlorhexidine gluconate use to prevent hospital acquired infections—a useful tool, not a panacea. Ann Transl Med 5(1):14

      PubMed  PubMed Central  Google Scholar 

    130. 130.

      Kampf G (2016) Acquired resistance to chlorhexidine—is it time to establish an ‘antiseptic stewardship’ initiative? J Hosp Infect 94(3):213–227

      CAS  PubMed  Google Scholar 

    131. 131.

      McNeil JC, Hulten KG, Kaplan SL, Mahoney DH, Mason EO (2013) Staphylococcus aureus infections in pediatric oncology patients: high rates of antimicrobial resistance, antiseptic tolerance and complications. Pediatr Infect Dis J 32(2):124–128

      PubMed  Google Scholar 

    132. 132.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2004) Anforderung an die Hygiene bei der Reinigung und Desinfektion von Flächen. Bundesgesundheitsbl 47(1):51–61

      Google Scholar 

    133. 133.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2018) Hygienemaßnahmen zur Prävention der Infektion durch Enterokokken mit speziellen Antibiotikaresistenzen. Bundesgesundheitsbl 61(10):1310–1361

      Google Scholar 

    134. 134.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2012) Hygienemaßnahmen bei Infektionen oder Besiedlung mit multiresistenten gramnegativen Stäbchen. Bundesgesundheitsbl 55(10):1311–1354

      Google Scholar 

    135. 135.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2019) Hygienemaßnahmen bei Clostridioides difficile-Infektion (CDI). Bundesgesundheitsbl 62(7):906–923

      Google Scholar 

    136. 136.

      Kanamori H, Rutala WA, Weber DJ (2017) The Role of Patient Care Items as a Fomite in Healthcare-Associated Outbreaks and Infection Prevention. Clin Infect Dis 65(8):1412–1419

      PubMed  Google Scholar 

    137. 137.

      Donskey CJ (2013) Does improving surface cleaning and disinfection reduce health care-associated infections? Am J Infect Control 41(5 Suppl):S12–S19

      PubMed  Google Scholar 

    138. 138.

      Han JH, Sullivan N, Leas BF, Pegues DA, Kaczmarek JL, Umscheid CA (2015) Cleaning Hospital Room Surfaces to Prevent Health Care-Associated Infections: A Technical Brief. Ann Intern Med 163(8):598–607

      PubMed  PubMed Central  Google Scholar 

    139. 139.

      Leas BF, Sullivan N, Han JH, Pegues DA, Kaczmarek JL, Umscheid CA (2015) Environmental Cleaning for the Prevention of Healthcare-Associated Infections Technical Brief, No 22, Agency for Healthcare Research and Quality, (AHRQ), Rockville (MD)

    140. 140.

      Havill NL (2013) Best practices in disinfection of noncritical surfaces in the health care setting: creating a bundle for success. Am J Infect Control 41(5 Suppl):S26–S30

      PubMed  Google Scholar 

    141. 141.

      Satlin MJ, Chavda KD, Baker TM et al (2018) Colonization With Levofloxacin-resistant Extended-spectrum beta-Lactamase-producing Enterobacteriaceae and Risk of Bacteremia in Hematopoietic Stem Cell Transplant Recipients. Clin Infect Dis 67(11):1720–1728

      CAS  PubMed  PubMed Central  Google Scholar 

    142. 142.

      Satlin MJ, Jenkins SG, Walsh TJ (2014) The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clin Infect Dis 58(9):1274–1283

      PubMed  PubMed Central  Google Scholar 

    143. 143.

      Satlin MJ, Walsh TJ (2017) Multidrug-resistant Enterobacteriaceae, Pseudomonas aeruginosa, and vancomycin-resistant Enterococcus: Three major threats to hematopoietic stem cell transplant recipients. Transpl Infect Dis 19(6):e12762

      Google Scholar 

    144. 144.

      Vehreschild MJ, Hamprecht A, Peterson L et al (2014) A multicentre cohort study on colonization and infection with ESBL-producing Enterobacteriaceae in high-risk patients with haematological malignancies. J Antimicrob Chemother 69(12):3387–3392

      CAS  PubMed  Google Scholar 

    145. 145.

      Vehreschild MJ, Liss BJ, Cornely OA (2013) Intestinal colonisation and blood stream infections due to vancomycin-resistant enterococci (VRE) and extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBLE) in patients with haematological and oncological malignancies. Infection 41(5):1049–1050

      CAS  PubMed  Google Scholar 

    146. 146.

      Vehreschild MJ, Weitershagen D, Biehl LM et al (2014) Clostridium difficile infection in patients with acute myelogenous leukemia and in patients undergoing allogeneic stem cell transplantation: epidemiology and risk factor analysis. Biol Blood Marrow Transplant 20(6):823–828

      PubMed  Google Scholar 

    147. 147.

      Ruhnke M, Arnold R, Gastmeier P (2014) Infection control issues in patients with haematological malignancies in the era of multidrug-resistant bacteria. Lancet Oncol 15(13):e606–e619

      PubMed  Google Scholar 

    148. 148.

      Pouch SM, Satlin MJ (2017) Carbapenem-resistant Enterobacteriaceae in special populations: Solid organ transplant recipients, stem cell transplant recipients, and patients with hematologic malignancies. Virulence 8(4):391–402

      CAS  PubMed  Google Scholar 

    149. 149.

      Medernach RL, Logan LK (2018) The Growing Threat of Antibiotic Resistance in Children. Infect Dis Clin North Am 32(1):1–17

      PubMed  PubMed Central  Google Scholar 

    150. 150.

      van Loon K, Voor In ’t Holt AF, Vos MC (2018) A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant Enterobacteriaceae. Antimicrob Agents Chemother 62(1)pii: e01730–17

    151. 151.

      Rump B, Timen A, Hulscher M, Verweij M (2018) Ethics of Infection Control Measures for Carriers of Antimicrobial Drug-Resistant Organisms. Emerg Infect Dis 24(9):1609–1616

      PubMed  PubMed Central  Google Scholar 

    152. 152.

      Kommission für Krankenhaushygiene (KRINKO) (2019) Ergänzung zur Empfehlung der KRINKO „Hygienemaßnahmen bei Infektionen oder Besiedlung mit multiresistenten gramnegativen Stäbchen“ (2012) im Zusammenhang mit der von EUCAST neu definierten Kategorie „I“ bei der Antibiotika-Resistenzbestimmung: Konsequenzen für die Definition von MRGN. Epid Bull 9:82–83

    153. 153.

      Rohde AM, Zweigner J, Wiese-Posselt M et al (2018) Incidence of infections due to third generation cephalosporin-resistant Enterobacteriaceae—a prospective multicentre cohort study in six German university hospitals. Antimicrob Resist Infect Control 7:159

      PubMed  PubMed Central  Google Scholar 

    154. 154.

      Boldt AC, Schwab F, Rohde AM et al (2018) Admission prevalence of colonization with third-generation cephalosporin-resistant Enterobacteriaceae and subsequent infection rates in a German university hospital. PLoS ONE 13(8):e201548

      PubMed  PubMed Central  Google Scholar 

    155. 155.

      Biehl LM, Schmidt-Hieber M, Liss B, Cornely OA, Vehreschild MJ (2016) Colonization and infection with extended spectrum beta-lactamase producing Enterobacteriaceae in high-risk patients—Review of the literature from a clinical perspective. Crit Rev Microbiol 42(1):1–16

      CAS  PubMed  Google Scholar 

    156. 156.

      Cattaneo C, Di Blasi R, Skert C et al (2018) Bloodstream infections in haematological cancer patients colonized by multidrug-resistant bacteria. Ann Hematol 97(9):1717–1726

      CAS  PubMed  Google Scholar 

    157. 157.

      Deutsche Gesellschaft für Pädiatrische Infektiologie (DGPI), Paed IC (2014) Infektionspräventives Vorgehen bei Nachweis von MRGN im Kindesalter. Hyg Med 39(10):392–399

      Google Scholar 

    158. 158.

      Joint FAO/WHO Codex Alimentarius Commission (1997) General Requirements (Food Hygiene). Codex Alimentarius (Supplement to Volume 1B). Food and Agriculture Organization of the United Nations (FAO), World Health Organization (WHO), Rome

    159. 159.

      De Waele E, Demol J, Caccialanza R et al (2019) Unidentified cachexia patients in the oncologic setting: Cachexia UFOs do exist. Nutrition 63–64(07/08):200–204

      PubMed  Google Scholar 

    160. 160.

      Isenring EA, Teleni L (2013) Nutritional counseling and nutritional supplements: a cornerstone of multidisciplinary cancer care for cachectic patients. Curr Opin Support Palliat Care 7(4):390–395

      PubMed  Google Scholar 

    161. 161.

      Kurk S, Peeters P, Stellato R et al (2019) Skeletal muscle mass loss and dose-limiting toxicities in metastatic colorectal cancer patients. J Cachexia Sarcopenia Muscle 10(4):803–813

      PubMed  PubMed Central  Google Scholar 

    162. 162.

      Schmid I, Albert MH, Stachel D, Simon A (2008) Nahrungsmittelrestriktionen zur Infektionsprävention bei Kindern mit Krebserkrankung: Was ist gesichert und was ist sinnvoll? Hyg Med 33(1/2):16–24

      Google Scholar 

    163. 163.

      Baumgartner A, Hoskin K, Schuetz P (2018) Optimization of nutrition during allogeneic hematologic stem cell transplantation. Curr Opin Clin Nutr Metab Care 21(3):152–158

      PubMed  Google Scholar 

    164. 164.

      Friedemann M (2008) Gesundheitliches Gefährdungspotenzial von Enterobacter sakazakii (Cronobacter spp. nov.) in Säuglingsnahrung. Bundesgesundheitbl 51(6):664–674

      CAS  Google Scholar 

    165. 165.

      Healy B, Cooney S, O’Brien S et al (2010) Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne Pathog Dis 7(4):339–350

      CAS  PubMed  Google Scholar 

    166. 166.

      Holy O, Forsythe S (2014) Cronobacter spp. as emerging causes of healthcare-associated infection. J Hosp Infect 86(3):169–177

      CAS  PubMed  Google Scholar 

    167. 167.

      Hurrell E, Kucerova E, Loughlin M et al (2009) Neonatal enteral feeding tubes as loci for colonisation by members of the Enterobacteriaceae. BMC Infect Dis 9:146

      PubMed  PubMed Central  Google Scholar 

    168. 168.

      Gardner A, Mattiuzzi G, Faderl S et al (2008) Randomized comparison of cooked and noncooked diets in patients undergoing remission induction therapy for acute myeloid leukemia. J Clin Oncol 26(35):5684–5688

      PubMed  PubMed Central  Google Scholar 

    169. 169.

      Lassiter M, Schneider SM (2015) A pilot study comparing the neutropenic diet to a non-neutropenic diet in the allogeneic hematopoietic stem cell transplantation population. Clin J Oncol Nurs 19(3):273–278

      PubMed  Google Scholar 

    170. 170.

      van Tiel F, Harbers MM, Terporten PH et al (2007) Normal hospital and low-bacterial diet in patients with cytopenia after intensive chemotherapy for hematological malignancy: a study of safety. Ann Oncol 18(6):1080–1084

      PubMed  Google Scholar 

    171. 171.

      Sonbol M, Jain T, Firwana B (2019) Neutropenic diets to prevent cancer infections: updated systematic review and meta-analysis. BMJ Support Palliat Care 9(4):425–433

      PubMed  Google Scholar 

    172. 172.

      Ball S, Brown TJ, Das A, Khera R, Khanna S, Gupta A (2019) Effect of Neutropenic Diet on Infection Rates in Cancer Patients With Neutropenia: A Meta-analysis of Randomized Controlled Trials. Am J Clin Oncol 42(3):270–274

      PubMed  Google Scholar 

    173. 173.

      Wolfe HR, Sadeghi N, Agrawal D, Johnson DH, Gupta A (2018) Things We Do For No Reason: Neutropenic Diet. J Hosp Med 13(8):573–576

      PubMed  Google Scholar 

    174. 174.

      Tramsen L, Salzmann-Manrique E, Bochennek K et al (2016) Lack of Effectiveness of Neutropenic Diet and Social Restrictions as Anti-Infective Measures in Children With Acute Myeloid Leukemia: An Analysis of the AML-BFM 2004 Trial. J Clin Oncol 34(23):2776–2783

      PubMed  PubMed Central  Google Scholar 

    175. 175.

      Taggart C, Neumann N, Alonso PB et al (2019) Comparing a Neutropenic Diet to a Food Safety-Based Diet in Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 25(7):1382–1386

      PubMed  Google Scholar 

    176. 176.

      Trifilio S, Helenowski I, Giel M et al (2012) Questioning the role of a neutropenic diet following hematopoetic stem cell transplantation. Biol Blood Marrow Transplant 18(9):1385–1390

      PubMed  Google Scholar 

    177. 177.

      Moody K, Finlay J, Mancuso C, Charlson M (2006) Feasibility and safety of a pilot randomized trial of infection rate: neutropenic diet versus standard food safety guidelines. J Pediatr Hematol Oncol 28(3):126–133

      PubMed  Google Scholar 

    178. 178.

      Goldenberg JZ, Yap C, Lytvyn L et al (2017) Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev 12:Cd6095

      PubMed  Google Scholar 

    179. 179.

      Guo Q, Goldenberg JZ, Humphrey C, El Dib R, Johnston BC (2019) Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev 4:Cd004827

      PubMed  Google Scholar 

    180. 180.

      Ouyang X, Li Q, Shi M et al (2019) Probiotics for preventing postoperative infection in colorectal cancer patients: a systematic review and meta-analysis. Int J Colorectal Dis 34(3):459–469

      PubMed  Google Scholar 

    181. 181.

      Wei D, Heus P, van de Wetering FT, van Tienhoven G, Verleye L, Scholten RJ (2018) Probiotics for the prevention or treatment of chemotherapy- or radiotherapy-related diarrhoea in people with cancer. Cochrane Database Syst Rev 8:Cd008831

      PubMed  Google Scholar 

    182. 182.

      Kujawa-Szewieczek A, Adamczak M, Kwiecien K, Dudzicz S, Gazda M, Wiecek A (2015) The Effect of Lactobacillus plantarum 299v on the Incidence of Clostridium difficile Infection in High Risk Patients Treated with Antibiotics. Nutrients 7(12):10179–10188

      PubMed  PubMed Central  Google Scholar 

    183. 183.

      Bai J, Behera M, Bruner DW (2018) The gut microbiome, symptoms, and targeted interventions in children with cancer: a systematic review. Support Care Cancer 26(2):427–439

      PubMed  Google Scholar 

    184. 184.

      Gorshein E, Wei C, Ambrosy S et al (2017) Lactobacillus rhamnosus GG probiotic enteric regimen does not appreciably alter the gut microbiome or provide protection against GVHD after allogeneic hematopoietic stem cell transplantation. Clin Transplant 31(5):e12947

      Google Scholar 

    185. 185.

      Cohen SA, Woodfield MC, Boyle N, Stednick Z, Boeckh M, Pergam SA (2016) Incidence and outcomes of bloodstream infections among hematopoietic cell transplant recipients from species commonly reported to be in over-the-counter probiotic formulations. Transpl Infect Dis 18(5):699–705

      CAS  PubMed  PubMed Central  Google Scholar 

    186. 186.

      Salminen MK, Rautelin H, Tynkkynen S et al (2006) Lactobacillus bacteremia, species identification, and antimicrobial susceptibility of 85 blood isolates. Clin Infect Dis 42(5):e35–e44

      CAS  PubMed  Google Scholar 

    187. 187.

      Land MH, Rouster-Stevens K, Woods CR, Cannon ML, Cnota J, Shetty AK (2005) Lactobacillus sepsis associated with probiotic therapy. Pediatrics 115(1):178–181

      PubMed  Google Scholar 

    188. 188.

      Kunz AN, Fairchok MP, Noel JM (2005) Lactobacillus sepsis associated with probiotic therapy. Pediatrics 116(2):517

      PubMed  Google Scholar 

    189. 189.

      Cannon JP, Lee TA, Bolanos JT, Danziger LH (2005) Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur J Clin Microbiol Infect Dis 24(1):31–40

      CAS  PubMed  Google Scholar 

    190. 190.

      Arpi M, Vancanneyt M, Swings J, Leisner JJ (2003) Six cases of Lactobacillus bacteraemia: identification of organisms and antibiotic susceptibility and therapy. Scand J Infect Dis 35(6–7):404–408

      PubMed  Google Scholar 

    191. 191.

      Carretto E, Barbarini D, Marzani FC et al (2001) Catheter-related bacteremia due to Lactobacillus rhamnosus in a single-lung transplant recipient. Scand J Infect Dis 33(10):780–782

      CAS  PubMed  Google Scholar 

    192. 192.

      Cooper CD, Vincent A, Greene JN, Sandin RL, Cobian L (1998) Lactobacillus bacteremia in febrile neutropenic patients in a cancer hospital. Clin Infect Dis 26(5):1247–1248

      CAS  PubMed  Google Scholar 

    193. 193.

      Schlegel L, Lemerle S, Geslin P (1998) Lactobacillus species as opportunistic pathogens in immunocompromised patients. Eur J Clin Microbiol Infect Dis 17(12):887–888

      CAS  PubMed  Google Scholar 

    194. 194.

      Munoz P, Bouza E, Cuenca-Estrella M et al (2005) Saccharomyces cerevisiae fungemia: an emerging infectious disease. Clin Infect Dis 40(11):1625–1634

      PubMed  Google Scholar 

    195. 195.

      Herbrecht R, Nivoix Y (2005) Saccharomyces cerevisiae fungemia: an adverse effect of Saccharomyces boulardii probiotic administration. Clin Infect Dis 40(11):1635–1637

      PubMed  Google Scholar 

    196. 196.

      Enache-Angoulvant A, Hennequin C (2005) Invasive Saccharomyces infection: a comprehensive review. Clin Infect Dis 41(11):1559–1568

      PubMed  Google Scholar 

    197. 197.

      Cesaro S, Chinello P, Rossi L, Zanesco L (2000) Saccharomyces cerevisiae fungemia in a neutropenic patient treated with Saccharomyces boulardii. Support Care Cancer 8(6):504–505

      CAS  PubMed  Google Scholar 

    198. 198.

      Cassone M, Serra P, Mondello F et al (2003) Outbreak of Saccharomyces cerevisiae subtype boulardii fungemia in patients neighboring those treated with a probiotic preparation of the organism. J Clin Microbiol 41(11):5340–5343

      PubMed  PubMed Central  Google Scholar 

    199. 199.

      Olver WJ, James SA, Lennard A et al (2002) Nosocomial transmission of Saccharomyces cerevisiae in bone marrow transplant patients. J Hosp Infect 52(4):268–272

      CAS  PubMed  Google Scholar 

    200. 200.

      Ladas EJ, Bhatia M, Chen L et al (2016) The safety and feasibility of probiotics in children and adolescents undergoing hematopoietic cell transplantation. Bone Marrow Transplant 51(2):262–266

      CAS  PubMed  Google Scholar 

    201. 201.

      Yelin I, Flett KB, Merakou C et al (2019) Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat Med 25(11):1728–1732

      CAS  PubMed  PubMed Central  Google Scholar 

    202. 202.

      Diorio C, Robinson PD, Ammann RA et al (2018) Guideline for the Management of Clostridium Difficile Infection in Children and Adolescents With Cancer and Pediatric Hematopoietic Stem-Cell Transplantation Recipients. J Clin Oncol 36(31):3162–3172

      CAS  PubMed  PubMed Central  Google Scholar 

    203. 203.

      Mehta A, Rangarajan S, Borate U (2013) A cautionary tale for probiotic use in hematopoietic SCT patients-Lactobacillus acidophilus sepsis in a patient with mantle cell lymphoma undergoing hematopoietic SCT. Bone Marrow Transplant 48(3):461–462

      CAS  PubMed  Google Scholar 

    204. 204.

      Hota S, Hirji Z, Stockton K et al (2009) Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design. Infect Control Hosp Epidemiol 30(1):25–33

      PubMed  Google Scholar 

    205. 205.

      Eckmanns T, Ruden H, Gastmeier P (2006) The influence of high-efficiency particulate air filtration on mortality and fungal infection among highly immunosuppressed patients: a systematic review. J Infect Dis 193(10):1408–1418

      PubMed  Google Scholar 

    206. 206.

      Passweg JR, Rowlings PA, Atkinson KA et al (1998) Influence of protective isolation on outcome of allogeneic bone marrow transplantation for leukemia. Bone Marrow Transplant 21(12):1231–1238

      CAS  PubMed  Google Scholar 

    207. 207.

      Menegueti MG, Ferreira LR, Silva MF, Silva AS, Bellissimo-Rodrigues F (2013) Assessment of microbiological air quality in hemato-oncology units and its relationship with the occurrence of invasive fungal infections: an integrative review. Rev Soc Bras Med Trop 46(4):391–396

      PubMed  Google Scholar 

    208. 208.

      Cesaro S, Tridello G, Castagnola E et al (2017) Retrospective study on the incidence and outcome of proven and probable invasive fungal infections in high-risk pediatric onco-hematological patients. Eur J Haematol 99(3):240–248

      CAS  PubMed  Google Scholar 

    209. 209.

      Linke C, Tragiannidis A, Ahlmann M et al (2019) Epidemiology and management burden of invasive fungal infections after autologous hematopoietic stem cell transplantation: 10-year experience at a European Pediatric Cancer Center. Mycoses 62:954–960

      PubMed  Google Scholar 

    210. 210.

      Vokurka S, Bystrická E, Svoboda T et al (2014) The availability of HEPA-filtered rooms and the incidence of pneumonia in patients after haematopoietic stem cell transplantation (HSCT): results from a prospective, multicentre, eastern European study. J Clin Nursing 23:1648–1652

      Google Scholar 

    211. 211.

      Hicheri Y, Einsele H, Martino R, Cesaro S, Ljungman P, Cordonnier C (2013) Environmental prevention of infection in stem cell transplant recipients: a survey of the Infectious Diseases Working Part of the European Group for Blood and Marrow Transplantation. Transpl Infect Dis 15:251–258

      CAS  PubMed  Google Scholar 

    212. 212.

      Ruijters VJ, Oosterom N, Wolfs TFW, van den Heuvel-Eibrink MM, van Grotel M (2019) Frequency and Determinants of Invasive Fungal Infections in Children With Solid and Hematologic Malignancies in a Nonallogeneic Stem Cell Transplantation Setting: A Narrative Review. J Pediatr Hematol Oncol 41(5):345–354

      PubMed  Google Scholar 

    213. 213.

      Styczynski J, Tridello G, Donnelly JP et al (2018) Protective environment for hematopoietic cell transplant (HSCT) recipients: The Infectious Diseases Working Party EBMT analysis of global recommendations on health-care facilities. Bone Marrow Transplant 53(9):1131–1138

      PubMed  Google Scholar 

    214. 214.

      Ortega Morente E, Fernandez-Fuentes MA, Grande Burgos MJ, Abriouel H, Pulido PR, Galvez A (2013) Biocide tolerance in bacteria. Int J Food Microbiol 162(1):13–25

      PubMed  Google Scholar 

    215. 215.

      Maschmeyer G, Neuburger S, Fritz L et al (2009) A prospective, randomised study on the use of well-fitting masks for prevention of invasive aspergillosis in high-risk patients. Ann Oncol 20(9):1560–1564

      CAS  PubMed  Google Scholar 

    216. 216.

      Raad I, Hanna H, Osting C et al (2002) Masking of neutropenic patients on transport from hospital rooms is associated with a decrease in nosocomial aspergillosis during construction. Infect Control Hosp Epidemiol 23(1):41–43

      PubMed  Google Scholar 

    217. 217.

      Verein Deutscher Ingenieure e. V. (VDI) Richtlinienreihe VDI 6022 „Raumlufttechnik, Raumluftqualität“. https://www.vdi.de/richtlinien/unsere-richtlinien-highlights/vdi-6022. Zugegriffen: 1. Nov. 2020

    218. 218.

      Göttlich E, Engesser K, Bardtke D (1994) Emission von Pilzsporen in Müllverarbeitungsanlagen. Forum Städte-Hygiene 45(11/12):321–325

      Google Scholar 

    219. 219.

      Dyck A, Exner M, Kramer A (2007) Experimental based experiences with the introduction of a water safety plan for a multi-located university clinic and its efficacy according to WHO recommendations. BMC Public Health 7:34

      PubMed  PubMed Central  Google Scholar 

    220. 220.

      Kizny Gordon AE, Mathers AJ, Cheong EYL et al (2017) The Hospital Water Environment as a Reservoir for Carbapenem-Resistant Organisms Causing Hospital-Acquired Infections—A Systematic Review of the Literature. Clin Infect Dis 64(10):1435–1444

      PubMed  Google Scholar 

    221. 221.

      Kossow A, Kampmeier S, Willems S et al (2017) Control of Multidrug-Resistant Pseudomonas aeruginosa in Allogeneic Hematopoietic Stem Cell Transplant Recipients by a Novel Bundle Including Remodeling of Sanitary and Water Supply Systems. Clin Infect Dis 65(6):935–942

      PubMed  Google Scholar 

    222. 222.

      Baranovsky S, Jumas-Bilak E, Lotthe A et al (2018) Tracking the spread routes of opportunistic premise plumbing pathogens in a haematology unit with water points-of-use protected by antimicrobial filters. J Hosp Infect 98(1):53–59

      CAS  PubMed  Google Scholar 

    223. 223.

      Garvey MI, Bradley CW, Holden E (2018) Waterborne Pseudomonas aeruginosa transmission in a hematology unit? Am J Infect Control 46(4):383–386

      PubMed  Google Scholar 

    224. 224.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2020) Anforderungen der Hygiene an abwasserführende Systeme in medizinischen Einrichtungen. Bundesgesundheitsbl 63(4):484–501

    225. 225.

      Charron D, Bedard E, Lalancette C, Laferriere C, Prevost M (2015) Impact of electronic faucets and water quality on the occurrence of Pseudomonas aeruginosa in water: a multi-hospital study. Infect Control Hosp Epidemiol 36(3):311–319

      PubMed  Google Scholar 

    226. 226.

      Schneider H, Geginat G, Hogardt M et al (2012) Pseudomonas aeruginosa outbreak in a pediatric oncology care unit caused by an errant water jet into contaminated siphons. Pediatr Infect Dis J 31(6):648–650

      PubMed  Google Scholar 

    227. 227.

      Picot-Gueraud R, Khouri C, Brenier-Pinchart MP et al (2015) En-suite bathrooms in protected haematology wards: a source of filamentous fungal contamination? J Hosp Infect 91(3):244–249

      CAS  PubMed  Google Scholar 

    228. 228.

      Brown L, Siddiqui S, McMullen A, Waller J, Baer S (2020) Revisiting the “leading edge” of hospital privacy curtains in the medical intensive care unit. Am J Infect Control 48(7):746–750

      PubMed  Google Scholar 

    229. 229.

      Larocque M, Carver S, Bertrand A, McGeer A, McLeod S, Borgundvaag B (2016) Acquisition of bacteria on health care workers’ hands after contact with patient privacy curtains. Am J Infect Control 44(11):1385–1386

      PubMed  Google Scholar 

    230. 230.

      Shek K, Patidar R, Kohja Z et al (2017) Rate of contamination of hospital privacy curtains on a burns and plastic surgery ward: a cross-sectional study. J Hosp Infect 96(1):54–58

      CAS  PubMed  Google Scholar 

    231. 231.

      Wilson G, Jackson V, Boyken L et al (2020) A randomized control trial evaluating efficacy of antimicrobial impregnated hospital privacy curtains in an intensive care setting. Am J Infect Control 48(8):862–868

      PubMed  Google Scholar 

    232. 232.

      Garvey MI, Wilkinson MAC, Holden KL, Martin T, Parkes J, Holden E (2019) Tap out: reducing waterborne Pseudomonas aeruginosa transmission in an intensive care unit. J Hosp Infect 102(1):75–81

      CAS  PubMed  Google Scholar 

    233. 233.

      Watkins LFK, Toews KE, Harris AM et al (2017) Lessons From an Outbreak of Legionnaires’ Disease on a Hematology-Oncology Unit. Infect Control Hosp Epidemiol 38(3):306–313

      Google Scholar 

    234. 234.

      Micol JB, de Botton S, Guieze R et al (2006) An 18-case outbreak of drug-resistant Pseudomonas aeruginosa bacteriemia in hematology patients. Haematologica 91(8):1134–1138

      CAS  PubMed  Google Scholar 

    235. 235.

      Vianelli N, Giannini MB, Quarti C et al (2006) Resolution of a Pseudomonas aeruginosa outbreak in a hematology unit with the use of disposable sterile water filters. Haematologica 91(7):983–985

      PubMed  Google Scholar 

    236. 236.

      De Brabandere E, Ablorh R, Leroux-Roels I (2017) The hospital sanitary as a source of a vim-producing multidrug resistant Pseudomonas aeruginosa outbreak at the pediatric hemato-oncology ward. Antimicrob Resist Infect Control 6(Suppl 3):52

      Google Scholar 

    237. 237.

      Walker J, Moore G (2016) Safe water in healthcare premises. J Hosp Infect 94(1):1

      CAS  PubMed  Google Scholar 

    238. 238.

      Garvey MI, Bradley CW, Jumaa P (2016) The risks of contamination from tap end filters. J Hosp Infect 94(3):282–283

      CAS  PubMed  Google Scholar 

    239. 239.

      Eckmanns T, Oppert M, Martin M et al (2008) An outbreak of hospital-acquired Pseudomonas aeruginosa infection caused by contaminated bottled water in intensive care units. Clin Microbiol Infect 14(5):454–458

      CAS  PubMed  Google Scholar 

    240. 240.

      Wilson C, Dettenkofer M, Jonas D, Daschner FD (2004) Pathogen growth in herbal teas used in clinical settings: a possible source of nosocomial infection? Am J Infect Control 32(2):117–119

      PubMed  Google Scholar 

    241. 241.

      Kanamori H, Rutala WA, Sickbert-Bennett EE, Weber DJ (2015) Review of fungal outbreaks and infection prevention in healthcare settings during construction and renovation. Clin Infect Dis 61(3):433–444

      PubMed  Google Scholar 

    242. 242.

      Pokala HR, Leonard D, Cox J et al (2014) Association of hospital construction with the development of healthcare associated environmental mold infections (HAEMI) in pediatric patients with leukemia. Pediatr Blood Cancer 61(2):276–280

      PubMed  Google Scholar 

    243. 243.

      Talento AF, Fitzgerald M, Redington B, O’Sullivan N, Fenelon L, Rogers TR (2019) Prevention of healthcare-associated invasive aspergillosis during hospital construction/renovation works. J Hosp Infect 103(1):1–12

      CAS  PubMed  Google Scholar 

    244. 244.

      Berger J, Willinger B, Diab-Elschahawi M et al (2011) Effectiveness of preventive measures for hemato-oncologic patients undergoing stem cell transplantation during a period of hospital construction. Am J Infect Control 39(9):746–751

      PubMed  Google Scholar 

    245. 245.

      Mellinghoff SC, Panse J, Alakel N et al (2018) Primary prophylaxis of invasive fungal infections in patients with haematological malignancies: 2017 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO). Ann Hematol 97(2):197–207

      PubMed  Google Scholar 

    246. 246.

      Lehrnbecher T (2015) Antifungal prophylaxis in pediatric patients undergoing therapy for cancer: drugs and dosing. Curr Opin Infect Dis 28(6):523–531

      CAS  PubMed  Google Scholar 

    247. 247.

      Yunus S, Pieper S, Kolve H, Goletz G, Jurgens H, Groll AH (2014) Azole-based chemoprophylaxis of invasive fungal infections in paediatric patients with acute leukaemia: an internal audit. J Antimicrob Chemother 69(3):815–820

      CAS  PubMed  Google Scholar 

    248. 248.

      Tragiannidis A, Dokos C, Lehrnbecher T, Groll AH (2012) Antifungal chemoprophylaxis in children and adolescents with haematological malignancies and following allogeneic haematopoietic stem cell transplantation: review of the literature and options for clinical practice. Drugs 72(5):685–704

      CAS  PubMed  Google Scholar 

    249. 249.

      Lehrnbecher T, Fisher BT, Phillips B et al (2020) Clinical Practice Guideline for Systemic Antifungal Prophylaxis in Pediatric Patients With Cancer and Hematopoietic Stem-Cell Transplantation Recipients. J Clin Oncol 38(27):3205–3216

    250. 250.

      Rhame FS (1991) Prevention of nosocomial aspergillosis. J Hosp Infect 18(Suppl A):466–472

      PubMed  Google Scholar 

    251. 251.

      Streifel AJ, Lauer JL, Vesley D, Juni B, Rhame FS (1983) Aspergillus fumigatus and other thermotolerant fungi generated by hospital building demolition. Appl Environ Microbiol 46(2):375–378

      CAS  PubMed  PubMed Central  Google Scholar 

    252. 252.

      Vonberg RP, Gastmeier P (2006) Nosocomial aspergillosis in outbreak settings. J Hosp Infect 63(3):246–254

      PubMed  Google Scholar 

    253. 253.

      Chang CC, Ananda-Rajah M, Belcastro A et al (2014) Consensus guidelines for implementation of quality processes to prevent invasive fungal disease and enhanced surveillance measures during hospital building works. Intern Med J 44(12b):1389–1397

      CAS  PubMed  Google Scholar 

    254. 254.

      Combariza JF, Toro LF, Orozco JJ, Arango M (2018) Cost-effectiveness analysis of interventions for prevention of invasive aspergillosis among leukemia patients during hospital construction activities. Eur J Haematol 100(2):140–146

      CAS  PubMed  Google Scholar 

    255. 255.

      Manuel RJ, Kibbler CC (1998) The epidemiology and prevention of invasive aspergillosis. J Hosp Infect 39(2):95–109

      CAS  PubMed  Google Scholar 

    256. 256.

      Mahieu LM, De Dooy JJ, Van Laer FA, Jansens H, Ieven MM (2000) A prospective study on factors influencing aspergillus spore load in the air during renovation works in a neonatal intensive care unit. J Hosp Infect 45(3):191–197

      CAS  PubMed  Google Scholar 

    257. 257.

      Barnes RA, Rogers TR (1989) Control of an outbreak of nosocomial aspergillosis by laminar air-flow isolation. J Hosp Infect 14(2):89–94

      CAS  PubMed  Google Scholar 

    258. 258.

      Klimowski LL, Rotstein C, Cummings KM (1989) Incidence of nosocomial aspergillosis in patients with leukemia over a twenty-year period. Infect Control Hosp Epidemiol 10(7):299–305

      CAS  PubMed  Google Scholar 

    259. 259.

      Antoniadou A (2009) Outbreaks of zygomycosis in hospitals. Clin Microbiol Infect 15(Suppl 5):55–59

      PubMed  Google Scholar 

    260. 260.

      Canada Communicable Disease Report (CCDR) (2001) Construction-related nosocomial infections in patients in health care facilities. Decreasing the risk of Aspergillus, Legionella and other infections. Can Commun Dis Rep 27(Suppl 2):1–42

    261. 261.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2015) Prävention und Kontrolle Katheter-assoziierter Harnwegsinfektionen. Bundesgesundheitsbl 58(6):641–650

      Google Scholar 

    262. 262.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2018) Prävention postoperativer Wundinfektionen. Bundesgesundheitsbl 61(4):448–473

      Google Scholar 

    263. 263.

      Tomsic I, Heinze NR, Chaberny IF, Krauth C, Schock B, von Lengerke T (2020) Implementation interventions in preventing surgical site infections in abdominal surgery: a systematic review. BMC Health Serv Res 20(1):236

      PubMed  PubMed Central  Google Scholar 

    264. 264.

      Poutsiaka DD, Munson D, Price LL, Chan GW, Snydman DR (2011) Blood stream infection (BSI) and acute GVHD after hematopoietic SCT (HSCT) are associated. Bone Marrow Transplant 46(2):300–307

      CAS  PubMed  Google Scholar 

    265. 265.

      Dandoy CE, Alonso PB (2019) MBI-LCBI and CLABSI: more than scrubbing the line. Bone Marrow Transplant 54(12):1932–1939

      PubMed  Google Scholar 

    266. 266.

      Balian C, Garcia M, Ward J (2018) A Retrospective Analysis of Bloodstream Infections in Pediatric Allogeneic Stem Cell Transplant Recipients: The Role of Central Venous Catheters and Mucosal Barrier Injury. J Pediatr Oncol Nurs 35(3):210–217

      PubMed  Google Scholar 

    267. 267.

      Dandoy CE, Haslam D, Lane A et al (2016) Healthcare Burden, Risk Factors, and Outcomes of Mucosal Barrier Injury Laboratory-Confirmed Bloodstream Infections after Stem Cell Transplantation. Biol Blood Marrow Transplant 22(9):1671–1677

      PubMed  PubMed Central  Google Scholar 

    268. 268.

      Lukenbill J, Rybicki L, Sekeres MA et al (2013) Defining incidence, risk factors, and impact on survival of central line-associated blood stream infections following hematopoietic cell transplantation in acute myeloid leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant 19(5):720–724

      PubMed  Google Scholar 

    269. 269.

      Mikulska M, Viscoli C, Orasch C et al (2014) Aetiology and resistance in bacteraemias among adult and paediatric haematology and cancer patients. J Infect 68(4):321–331

      PubMed  Google Scholar 

    270. 270.

      Metzger KE, Rucker Y, Callaghan M et al (2015) The burden of mucosal barrier injury laboratory-confirmed bloodstream infection among hematology, oncology, and stem cell transplant patients. Infect Control Hosp Epidemiol 36(2):119–124

      PubMed  Google Scholar 

    271. 271.

      See I, Iwamoto M, Allen-Bridson K, Horan T, Magill SS, Thompson ND (2013) Mucosal barrier injury laboratory-confirmed bloodstream infection: results from a field test of a new National Healthcare Safety Network definition. Infect Control Hosp Epidemiol 34(8):769–776

      PubMed  Google Scholar 

    272. 272.

      Stango C, Runyan D, Stern J, Macri I, Vacca M (2014) A successful approach to reducing bloodstream infections based on a disinfection device for intravenous needleless connector hubs. J Infus Nurs 37(6):462–465

      PubMed  Google Scholar 

    273. 273.

      Kamboj M, Blair R, Bell N et al (2015) Use of Disinfection Cap to Reduce Central-Line-Associated Bloodstream Infection and Blood Culture Contamination Among Hematology-Oncology Patients. Infect Control Hosp Epidemiol 36(12):1401–1408

      PubMed  PubMed Central  Google Scholar 

    274. 274.

      Timsit JF, Mimoz O, Mourvillier B et al (2012) Randomized controlled trial of chlorhexidine dressing and highly adhesive dressing for preventing catheter-related infections in critically ill adults. Am J Respir Crit Care Med 186(12):1272–1278

      CAS  PubMed  Google Scholar 

    275. 275.

      Timsit JF, Schwebel C, Bouadma L et al (2009) Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA 301(12):1231–1241

      CAS  PubMed  Google Scholar 

    276. 276.

      Ruschulte H, Franke M, Gastmeier P et al (2009) Prevention of central venous catheter related infections with chlorhexidine gluconate impregnated wound dressings: a randomized controlled trial. Ann Hematol 88(3):267–272

      CAS  PubMed  Google Scholar 

    277. 277.

      van der Velden WJ, Herbers AH, Netea MG, Blijlevens NM (2014) Mucosal barrier injury, fever and infection in neutropenic patients with cancer: introducing the paradigm febrile mucositis. Br J Haematol 167(4):441–452

      PubMed  Google Scholar 

    278. 278.

      Zecha J, Raber-Durlacher J, Laheij A et al (2019) The impact of the oral cavity in febrile neutropenia and infectious complications in patients treated with myelosuppressive chemotherapy. Support Care Cancer 27(10):3667–3679

      PubMed  PubMed Central  Google Scholar 

    279. 279.

      Schmalz G, Tulani L, Busjan R et al (2020) Dental and Periodontal Treatment Need after Dental Clearance Is Not Associated with the Outcome of Induction Therapy in Patients with Acute Leukemia: Results of a Retrospective Pilot Study. Adv Hematol 2020:6710906

      PubMed  PubMed Central  Google Scholar 

    280. 280.

      Carvalho CG, Medeiros-Filho JB, Ferreira MC (2018) Guide for health professionals addressing oral care for individuals in oncological treatment based on scientific evidence. Support Care Cancer 26(8):2651–2661

      PubMed  Google Scholar 

    281. 281.

      Lalla RV, Bowen J, Barasch A et al (2014) MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 120(10):1453–1461

      PubMed  PubMed Central  Google Scholar 

    282. 282.

      Peterson DE, Boers-Doets CB, Bensadoun RJ, Herrstedt J (2015) Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up. Ann Oncol 26(Suppl 5):v139–v151

    283. 283.

      Mutters NT, Neubert TR, Nieth R, Mutters R (2015) The role of Octenidol®, Glandomed® and chlorhexidine mouthwash in the prevention of mucositis and in the reduction of the oropharyngeal flora: a double-blind randomized controlled trial. GMS Hyg Infect Control 10:Doc5

      PubMed  PubMed Central  Google Scholar 

    284. 284.

      Cardona A, Balouch A, Abdul MM, Sedghizadeh PP, Enciso R (2017) Efficacy of chlorhexidine for the prevention and treatment of oral mucositis in cancer patients: a systematic review with meta-analyses. J Oral Pathol Med 46(9):680–688

      CAS  PubMed  Google Scholar 

    285. 285.

      Lemes LG, Correa TS, Fiaccadori FS et al (2014) Prospective study on Norovirus infection among allogeneic stem cell transplant recipients: prolonged viral excretion and viral RNA in the blood. J Clin Virol 61(3):329–333

      CAS  PubMed  Google Scholar 

    286. 286.

      Sheahan A, Copeland G, Richardson L et al (2015) Control of norovirus outbreak on a pediatric oncology unit. Am J Infect Control 43(10):1066–1069

      PubMed  PubMed Central  Google Scholar 

    287. 287.

      Ye X, Van JN, Munoz FM et al (2015) Noroviruses as a Cause of Diarrhea in Immunocompromised Pediatric Hematopoietic Stem Cell and Solid Organ Transplant Recipients. Am J Transplant 15(7):1874–1881

      CAS  PubMed  PubMed Central  Google Scholar 

    288. 288.

      Echenique IA, Penugonda S, Stosor V, Ison MG, Angarone MP (2015) Diagnostic yields in solid organ transplant recipients admitted with diarrhea. Clin Infect Dis 60(5):729–737

      CAS  PubMed  Google Scholar 

    289. 289.

      Kamboj M, Mihu CN, Sepkowitz K, Kernan NA, Papanicolaou GA (2007) Work-up for infectious diarrhea after allogeneic hematopoietic stem cell transplantation: single specimen testing results in cost savings without compromising diagnostic yield. Transpl Infect Dis 9(4):265–269

      CAS  PubMed  Google Scholar 

    290. 290.

      Trinh SA, Echenique IA, Penugonda S, Angarone MP (2017) Optimal strategies for the diagnosis of community-onset diarrhea in solid organ transplant recipients: Less is more. Transpl Infect Dis 19(2):e12673

      Google Scholar 

    291. 291.

      Chadwick PR, Beards G, Brown D et al (2000) Management of hospital outbreaks of gastro-enteritis due to small roundstructured viruses. J Hosp Infect 45(1):1–10

      CAS  PubMed  Google Scholar 

    292. 292.

      Robert Koch-Institut (RKI) (2006) Norovirus-Gastroenteritiden haben in den letzten Wochen deutlich zugenommen – steht eine neue Winterepidemie bevor? Epid Bull 48:427–429

      Google Scholar 

    293. 293.

      Robert Koch-Institut (RKI) (2019) RKI-Ratgeber. Rotaviren-Gastroenteritis. https://www.rki.de/DE/Content/Infekt/EpidBull/Merkblaetter/Ratgeber_Rotaviren.html. Zugegriffen: 1. Nov. 2020

    294. 294.

      Kleinkauf N, Eckmanns T, Robert Koch-Institut (RKI) (2008) Clostridium difficile: Zum Stand der Meldungen schwer verlaufender Infektionen in. Bull, Bd. 15. Epid, Deutschland, S 117–119

      Google Scholar 

    295. 295.

      Daniel-Wayman S, Fahle G, Palmore T, Green KY, Prevots DR (2018) Norovirus, astrovirus, and sapovirus among immunocompromised patients at a tertiary care research hospital. Diagn Microbiol Infect Dis 92(2):143–146

      PubMed  Google Scholar 

    296. 296.

      Green KY (2014) Norovirus infection in immunocompromised hosts. Clin Microbiol Infect 20(8):717–723

      CAS  PubMed  Google Scholar 

    297. 297.

      Kamboj M, Son C, Cantu S et al (2012) Hospital-onset Clostridium difficile infection rates in persons with cancer or hematopoietic stem cell transplant: a C3IC network report. Infect Control Hosp Epidemiol 33(11):1162–1165

      PubMed  PubMed Central  Google Scholar 

    298. 298.

      Kamboj M, Sheahan A, Sun J et al (2016) Transmission of Clostridium difficile During Hospitalization for Allogeneic Stem Cell Transplant. Infect Control Hosp Epidemiol 37(1):8–15

      PubMed  Google Scholar 

    299. 299.

      Plößer P (2007) Clostridium difficile: Nachweis von Ribotyp 027 in Deutschschland – Clostridium difficile im Überblick – Hygienemaßnahmen. Hyg Med 32(10):403–405

      Google Scholar 

    300. 300.

      Schneider T, Eckmanns T, Ignatius R, Weist K, Liesenfeld O (2007) Clostridium-difficile-assoziierte Diarrhö. Dtsch Arztebl 104(22):1588–1594

      Google Scholar 

    301. 301.

      Boyle NM, Magaret A, Stednick Z et al (2015) Evaluating risk factors for Clostridium difficile infection in adult and pediatric hematopoietic cell transplant recipients. Antimicrob Resist Infect Control 4:41

      PubMed  PubMed Central  Google Scholar 

    302. 302.

      Bruminhent J, Wang ZX, Hu C et al (2014) Clostridium difficile colonization and disease in patients undergoing hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 20(9):1329–1334

      PubMed  Google Scholar 

    303. 303.

      Kinnebrew MA, Lee YJ, Jenq RR et al (2014) Early Clostridium difficile infection during allogeneic hematopoietic stem cell transplantation. Plos One 9(3):e90158

      PubMed  PubMed Central  Google Scholar 

    304. 304.

      Simon A, Mock M, Graf N, von Muller L (2018) Investigation of Clostridium difficile ribotypes in symptomatic patients of a German pediatric oncology center. Eur J Pediatr 177(3):403–408

      CAS  PubMed  Google Scholar 

    305. 305.

      Salamonowicz M, Ociepa T, Fraczkiewicz J et al (2018) Incidence, course, and outcome of Clostridium difficile infection in children with hematological malignancies or undergoing hematopoietic stem cell transplantation. Eur J Clin Microbiol Infect Dis 37(9):1805–1812

      PubMed  PubMed Central  Google Scholar 

    306. 306.

      Risi GF, Tomascak V (1998) Prevention of infection in the immunocompromised host. Am J Infect Control 26(6):594–604

      CAS  PubMed  Google Scholar 

    307. 307.

      McCullough A, Ruehrdanz A, Jenkins MA et al (2018) Measuring the Effects of an Animal-Assisted Intervention for Pediatric Oncology Patients and Their Parents: A Multisite Randomized Controlled Trial. J Pediatr Oncol Nurs 35(3):159–177

      PubMed  Google Scholar 

    308. 308.

      Schmitz A, Beermann M, MacKenzie CR, Fetz K, Schulz-Quach C (2017) Animal-assisted therapy at a University Centre for Palliative Medicine—a qualitative content analysis of patient records. BMC Palliat Care 16(1):50

      PubMed  PubMed Central  Google Scholar 

    309. 309.

      Ariza-Heredia EJ, Kontoyiannis DP (2014) Our recommendations for avoiding exposure to fungi outside the hospital for patients with haematological cancers. Mycoses 57(6):336–341

      PubMed  Google Scholar 

    310. 310.

      Böhme H, Fruth A, Rabsch W (2009) Reptilien-assoziierte Salmonelleninfektionen bei Säuglingen und Kleinkindern in Deutschland. Klin Padiatr 221(02):60–64

      PubMed  Google Scholar 

    311. 311.

      Boost MV, O’Donoghue MM, Siu KH (2007) Characterisation of methicillin-resistant Staphylococcus aureus isolates from dogs and their owners. Clin Microbiol Infect 13(7):731–733

      CAS  PubMed  Google Scholar 

    312. 312.

      Gabriels P, Joosen H, Put E, Verhaegen J, Magerman K, Cartuyvels R (2006) Recurrent Rhodococcus equi infection with fatal outcome in an immunocompetent patient. Eur J Clin Microbiol Infect Dis 25(1):46–48

      CAS  PubMed  Google Scholar 

    313. 313.

      Harris JR, Neil KP, Behravesh CB, Sotir MJ, Angulo FJ (2010) Recent multistate outbreaks of human salmonella infections acquired from turtles: a continuing public health challenge. Clin Infect Dis 50(4):554–559

      PubMed  Google Scholar 

    314. 314.

      Morris DO, Lautenbach E, Zaoutis T, Leckerman K, Edelstein PH, Rankin SC (2012) Potential for pet animals to harbour methicillin-resistant Staphylococcus aureus when residing with human MRSA patients. Zoonoses Public Health 59(4):286–293

      CAS  PubMed  PubMed Central  Google Scholar 

    315. 315.

      Simon A (2013) Umgang mit Tierkontakten bei immunsupprimierten Kindern. Hyg Med 38(7/8):321–323

      Google Scholar 

    316. 316.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2020) Surveillance von nosokomialen Infektionen. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl 63(2):228–241

      Google Scholar 

    317. 317.

      Bearman G, Doll M, Cooper K, Stevens MP (2019) Hospital Infection Prevention: How Much Can We Prevent and How Hard Should We Try? Curr Infect Dis Rep 21(1):2

      PubMed  Google Scholar 

    318. 318.

      Horowitz HW (2018) Infection control IV: Moving forward—infection preventionists’ scope of practice. Am J Infect Control 46(7):734–735

      PubMed  Google Scholar 

    319. 319.

      Vokes RA, Bearman G, Bazzoli GJ (2018) Hospital-Acquired Infections Under Pay-for-Performance Systems: an Administrative Perspective on Management and Change. Curr Infect Dis Rep 20(9):35

      PubMed  Google Scholar 

    320. 320.

      Horowitz HW (2015) Infection control: Public reporting, disincentives, and bad behavior. Am J Infect Control 43(9):989–991

      PubMed  Google Scholar 

    321. 321.

      Horowitz HW (2016) Infection control II: A practical guide to getting to zero. Am J Infect Control 44(9):1075–1077

      PubMed  Google Scholar 

    322. 322.

      Williams MR, Costa SK, Zaramela LS et al (2019) Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Sci Transl Med 11(490):eaat8329

      CAS  PubMed  PubMed Central  Google Scholar 

    323. 323.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2001) Mitteilungen der Kommission für Krankenhaushygiene und Infektionsprävention zur Surveillance (Erfassung und Bewertung) von nosokomialen Infektionen (Umsetzung §23 IfSG). Bundesgesundheitsbl 44(5):523–536

      Google Scholar 

    324. 324.

      Ammann RA, Laws HJ, Schrey D et al (2015) Bloodstream infection in paediatric cancer centres—leukaemia and relapsed malignancies are independent risk factors. Eur J Pediatr 174(5):675–686

      CAS  PubMed  Google Scholar 

    325. 325.

      Dettenkofer M, Ebner W, Bertz H et al (2003) Surveillance of nosocomial infections in adult recipients of allogeneic and autologous bone marrow and peripheral blood stem-cell transplantation. Bone Marrow Transplant 31(9):795–801

      CAS  PubMed  Google Scholar 

    326. 326.

      Dettenkofer M, Wenzler-Rottele S, Babikir R et al (2005) Surveillance of nosocomial sepsis and pneumonia in patients with a bone marrow or peripheral blood stem cell transplant: a multicenter project. Clin Infect Dis 40(7):926–931

      CAS  PubMed  Google Scholar 

    327. 327.

      Simon A, Fleischhack G, Hasan C, Bode U, Engelhart S, Kramer MH (2000) Surveillance for nosocomial and central line-related infections among pediatric hematology-oncology patients. Infect Control Hosp Epidemiol 21(9):592–596

      CAS  PubMed  Google Scholar 

    328. 328.

      Simon A, Fleischhack G (2001) Surveillance nosokomialer Infektionen in der pädiatrischen Hämatologie/Onkologie. Klin Padiatr 213(S1):A106–A113

      PubMed  Google Scholar 

    329. 329.

      Simon A, Furtwangler R, Graf N et al (2016) Surveillance of bloodstream infections in pediatric cancer centers—what have we learned and how do we move on? GMS Hyg Infect Control 11:Doc11

      PubMed  PubMed Central  Google Scholar 

    330. 330.

      Fraser TG, Gordon SM (2011) CLABSI rates in immunocompromised patients: a valuable patient centered outcome? Clin Infect Dis 52(12):1446–1450

      PubMed  Google Scholar 

    331. 331.

      Sexton DJ, Chen LF, Anderson DJ (2010) Current definitions of central line-associated bloodstream infection: is the emperor wearing clothes? Infect Control Hosp Epidemiol 31(12):1286–1289

      PubMed  Google Scholar 

    332. 332.

      Chaftari AM, Jordan M, Hachem R et al (2016) A clinical practical approach to the surveillance definition of central line-associated bloodstream infection in cancer patients with mucosal barrier injury. Am J Infect Control 44(8):931–934

      PubMed  Google Scholar 

    333. 333.

      Satwani P, Freedman JL, Chaudhury S et al (2017) A Multicenter Study of Bacterial Blood Stream Infections in Pediatric Allogeneic Hematopoietic Cell Transplantation Recipients: The Role of Acute Gastrointestinal Graft-versus-Host Disease. Biol Blood Marrow Transplant 23(4):642–647

      PubMed  Google Scholar 

    334. 334.

      Tamburini FB, Andermann TM, Tkachenko E, Senchyna F, Banaei N, Bhatt AS (2018) Precision identification of diverse bloodstream pathogens in the gut microbiome. Nat Med 24(12):1809–1814

      CAS  PubMed  PubMed Central  Google Scholar 

    335. 335.

      Gyarmati P, Kjellander C, Aust C, Kalin M, Ohrmalm L, Giske CG (2015) Bacterial Landscape of Bloodstream Infections in Neutropenic Patients via High Throughput Sequencing. Plos One 10(8):e135756

      PubMed  PubMed Central  Google Scholar 

    336. 336.

      Gopalakrishnan V, Jenq RR (2018) Implicating or exonerating the gut microbiome in blood-borne infection. Nat Med 24(12):1788–1789

      CAS  PubMed  Google Scholar 

    337. 337.

      Allaway Z, Phillips RS, Thursky KA, Haeusler GM (2019) Nonneutropenic fever in children with cancer: A scoping review of management and outcome. Pediatr Blood Cancer 66(6):e27634

      PubMed  Google Scholar 

    338. 338.

      Williams MR, Costa SK, Zaramela LS et al (2019) Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Sci Transl Med 11:eaat8329

      CAS  PubMed  PubMed Central  Google Scholar 

    339. 339.

      Shaw BE, Boswell T, Byrne JL, Yates C, Russell NH (2007) Clinical impact of MRSA in a stem cell transplant unit: analysis before, during and after an MRSA outbreak. Bone Marrow Transplant 39(10):623–629

      CAS  PubMed  Google Scholar 

    340. 340.

      Miles-Jay A, Podczervinski S, Stednick ZJ, Pergam SA (2015) Evaluation of routine pretransplantation screening for methicillin-resistant Staphylococcus aureus in hematopoietic cell transplant recipients. Am J Infect Control 43(1):89–91

      PubMed  PubMed Central  Google Scholar 

    341. 341.

      Liss BJ, Vehreschild JJ, Cornely OA et al (2012) Intestinal colonisation and blood stream infections due to vancomycin-resistant enterococci (VRE) and extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBLE) in patients with haematological and oncological malignancies. Infection 40(6):613–619

      CAS  PubMed  Google Scholar 

    342. 342.

      Ziakas PD, Pliakos EE, Zervou FN, Knoll BM, Rice LB, Mylonakis E (2014) MRSA and VRE colonization in solid organ transplantation: a meta-analysis of published studies. Am J Transplant 14(8):1887–1894

      CAS  PubMed  Google Scholar 

    343. 343.

      Bert F, Larroque B, Dondero F et al (2014) Risk factors associated with preoperative fecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae in liver transplant recipients. Transpl Infect Dis 16(1):84–89

      CAS  PubMed  Google Scholar 

    344. 344.

      Webb BJ, Healy R, Majers J et al (2017) Prediction of Bloodstream Infection Due to Vancomycin-Resistant Enterococcus in Patients Undergoing Leukemia Induction or Hematopoietic Stem-Cell Transplantation. Clin Infect Dis 64(12):1753–1759

      CAS  PubMed  Google Scholar 

    345. 345.

      Averbuch D, Orasch C, Cordonnier C et al (2013) European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: summary of the 2011 4th European Conference on Infections in Leukemia. Haematologica 98(12):1826–1835

      PubMed  PubMed Central  Google Scholar 

    346. 346.

      Baker TM, Satlin MJ (2016) The growing threat of multidrug-resistant Gram-negative infections in patients with hematologic malignancies. Leuk Lymphoma 57(10):2245–2258

      CAS  PubMed  PubMed Central  Google Scholar 

    347. 347.

      Friedman ND, Carmeli Y, Walton AL, Schwaber MJ (2017) Carbapenem-Resistant Enterobacteriaceae: A Strategic Roadmap for Infection Control. Infect Control Hosp Epidemiol 38(5):580–594

      PubMed  Google Scholar 

    348. 348.

      Holland T, Fowler VG Jr, Shelburne SA 3rd (2014) Invasive gram-positive bacterial infection in cancer patients. Clin Infect Dis 59(Suppl 5):S331–S334

      PubMed  PubMed Central  Google Scholar 

    349. 349.

      Munoz-Price LS, Poirel L, Bonomo RA et al (2013) Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13(9):785–796

      PubMed  PubMed Central  Google Scholar 

    350. 350.

      Trubiano JA, Worth LJ, Thursky KA, Slavin MA (2015) The prevention and management of infections due to multidrug resistant organisms in haematology patients. Br J Clin Pharmacol 79(2):195–207

      CAS  PubMed  PubMed Central  Google Scholar 

    351. 351.

      Heidenreich D, Kreil S, Jawhar M et al (2018) Course of colonization by multidrug-resistant organisms after allogeneic hematopoietic cell transplantation. Ann Hematol 97(12):2501–2508

      CAS  PubMed  Google Scholar 

    352. 352.

      Heidenreich D, Kreil S, Nolte F, Hofmann WK, Miethke T, Klein SA (2017) Multidrug-resistant organisms in allogeneic hematopoietic cell transplantation. Eur J Haematol 98(5):485–492

      CAS  PubMed  Google Scholar 

    353. 353.

      Bartoletti M, Giannella M, Tedeschi S, Viale P (2018) Multidrug-Resistant Bacterial Infections in Solid Organ Transplant Candidates and Recipients. Infect Dis Clin North Am 32(3):551–580

      PubMed  Google Scholar 

    354. 354.

      Rohde AM, Wiese-Posselt M, Zweigner J et al (2018) High admission prevalence of fluoroquinolone resistance in third-generation cephalosporin-resistant Enterobacteriaceae in German university hospitals. J Antimicrob Chemother 73(6):1688–1691

      CAS  PubMed  Google Scholar 

    355. 355.

      Seo GH, Kim MJ, Seo S et al (2016) Cancer-specific incidence rates of tuberculosis: A 5-year nationwide population-based study in a country with an intermediate tuberculosis burden. Med (baltimore) 95(38):e4919

      Google Scholar 

    356. 356.

      Simonsen DFFD, Horsburgh CR (2017) Increased risk of active tuberculosis after cancer diagnosis. J Infect Chemother 74:590–598

      Google Scholar 

    357. 357.

      Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2013) Aspekte der mikrobiologischen Diagnostik im Rahmen der Prävention von nosokomialen Infektionen. Epid Bull(19):171–172

    358. 358.

      Neumann S, Krause SW, Maschmeyer G, Schiel X, von Lilienfeld-Toal M (2013) Primary prophylaxis of bacterial infections and Pneumocystis jirovecii pneumonia in patients with hematological malignancies and solid tumors : guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol 92(4):433–442

      CAS  PubMed  PubMed Central  Google Scholar 

    359. 359.

      Baden LR, Swaminathan S, Angarone M et al (2016) Prevention and Treatment of Cancer-Related Infections, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 14(7):882–913

      CAS  PubMed  Google Scholar 

    360. 360.

      Tacconelli E, Sifakis F, Harbarth S et al (2018) Surveillance for control of antimicrobial resistance. Lancet Infect Dis 18(3):e99–e106

      PubMed  Google Scholar 

    361. 361.

      Rangaraj G, Granwehr BP, Jiang Y, Hachem R, Raad I (2010) Perils of quinolone exposure in cancer patients: breakthrough bacteremia with multidrug-resistant organisms. Cancer 116(4):967–973

      PubMed  Google Scholar 

    362. 362.

      Mikulska M, Cordonnier C (2018) Fluoroquinolone prophylaxis during neutropenia: what can we expect nowadays? Clin Microbiol Infect 24(7):678–679

      CAS  PubMed  Google Scholar 

    363. 363.

      Verlinden A, Jansens H, Goossens H et al (2014) Clinical and microbiological impact of discontinuation of fluoroquinolone prophylaxis in patients with prolonged profound neutropenia. Eur J Haematol 93(4):302–308

      CAS  PubMed  Google Scholar 

    364. 364.

      Haeusler GM, Slavin MA (2013) Fluoroquinolone prophylaxis: worth the cost? Leuk Lymphoma 54(4):677–678

      PubMed  Google Scholar 

    365. 365.

      Saini L, Rostein C, Atenafu EG, Brandwein JM (2013) Ambulatory consolidation chemotherapy for acute myeloid leukemia with antibacterial prophylaxis is associated with frequent bacteremia and the emergence of fluoroquinolone resistant E. Coli. BMC Infect Dis 13:284

      PubMed  PubMed Central  Google Scholar 

    366. 366.

      Lehrnbecher T, Fisher BT, Phillips B et al (2020) Guideline for Antibacterial Prophylaxis Administration in Pediatric Cancer and Hematopoietic Stem Cell Transplantation. Clin Infect Dis 71(1):226–236

      CAS  PubMed  Google Scholar 

    367. 367.

      Egan G, Robinson PD, Martinez JPD et al (2019) Efficacy of antibiotic prophylaxis in patients with cancer and hematopoietic stem cell transplantation recipients: A systematic review of randomized trials. Cancer Med 8(10):4536–4546

      CAS  PubMed  PubMed Central  Google Scholar 

    368. 368.

      Elishoov H, Or R, Strauss N, Engelhard D (1998) Nosocomial colonization, septicemia, and Hickman/Broviac catheter-related infections in bone marrow transplant recipients. A 5-year prospective study. Medicine (Baltimore) 77(2):83–101

      CAS  Google Scholar 

    369. 369.

      Cohen ML, Murphy MT, Counts GW, Buckner CD, Clift RA, Meyers JD (1983) Prediction by surveillance cultures of bacteremia among neutropenic patients treated in a protective environment. J Infect Dis 147(5):789–793

      CAS  PubMed  Google Scholar 

    370. 370.

      Daw MA, Munnelly P, McCann SR, Daly PA, Falkiner FR, Keane CT (1988) Value of surveillance cultures in the management of neutropenic patients. Eur J Clin Microbiol Infect Dis 7(6):742–747

      CAS  PubMed  Google Scholar 

    371. 371.

      de Jong PJ, de Jong MD, Kuijper EJ, van der Lelie H (1993) The value of surveillance cultures in neutropenic patients receiving selective intestinal decontamination. Scand J Infect Dis 25(1):107–113

      PubMed  Google Scholar 

    372. 372.

      Feld R (1997) The role of surveillance cultures in patients likely to develop chemotherapy-induced mucositis. Support Care Cancer 5(5):371–375

      CAS  PubMed  Google Scholar 

    373. 373.

      Baier C, Linderkamp C, Beilken A et al (2018) Influenza and respiratory syncytial virus screening for the detection of asymptomatically infected patients in hematology and oncology. GMS Hyg Infect Control 13:Doc8

      PubMed  PubMed Central  Google Scholar 

    374. 374.

      Hermann B, Lehners N, Brodhun M et al (2017) Influenza virus infections in patients with malignancies—characteristics and outcome of the season 2014/15. A survey conducted by the Infectious Diseases Working Party (AGIHO) of the German Society of Haematology and Medical Oncology (DGHO). Eur J Clin Microbiol Infect Dis 36(3):565–573

      CAS  PubMed  Google Scholar 

    375. 375.

      French CE, McKenzie BC, Coope C et al (2016) Risk of nosocomial respiratory syncytial virus infection and effectiveness of control measures to prevent transmission events: a systematic review. Influenza Other Respir Viruses 10(4):268–290

      PubMed  PubMed Central  Google Scholar 

    376. 376.

      Aichinger E, Schnitzler P, Heeg K et al (2014) Contributing and Terminating Factors of a Large RSV Outbreak in an Adult Hematology and Transplant Unit. PLoS Curr. https://doi.org/10.1371/currents.outbreaks.3bc85b2a508d205ecc4a5534ecb1f9be

    377. 377.

      Inkster T, Ferguson K, Edwardson A, Gunson R, Soutar R (2017) Consecutive yearly outbreaks of respiratory syncytial virus in a haemato-oncology ward and efficacy of infection control measures. J Hosp Infect 96(4):353–359

      CAS  PubMed  PubMed Central  Google Scholar 

    378. 378.

      Jensen TO, Stelzer-Braid S, Willenborg C et al (2016) Outbreak of respiratory syncytial virus (RSV) infection in immunocompromised adults on a hematology ward. J Med Virol 88(10):1827–1831

      PubMed  Google Scholar 

    379. 379.

      Gudiol C, Verdaguer R, Dominguez AM, Fernandez-Sevilla A, Carratala J (2007) Outbreak of Legionnaires’ disease in immunosuppressed patients at a cancer centre: usefulness of universal urine antigen testing and early levofloxacin therapy. Clin Microbiol Infect 13(11):1125–1128

      CAS  PubMed  Google Scholar 

    380. 380.

      Deutschen Gesellschaft für Pädiatrische Infektiologie (DGPI) (2018) S2k Leitlinie „Antibiotic Stewardship – Konzeption und Umsetzung in der stationären Kinder- und Jugendmedizin“. AWMF-Registernummer 048/15. https://www.awmf.org/uploads/tx_szleitlinien/048-015l_S2k_Antibiotic-Stewardship-ABS-Konzeption-Umsetzung-stationaere-Kinder-Jugendmedizin_2019-01.pdf. Zugegriffen: 1. Nov. 2020

    381. 381.

      de With K, Wilke K, Kern WV et al (2019) S3-Leitlinie. Strategien zur Sicherung rationaler Antibiotika-Anwendung im Krankenhaus. AWMF-Registernummer 092-001 – update 2018 (Stand: 31.01.2019). https://www.awmf.org/leitlinien/detail/ll/092-001.html. Zugegriffen: 1. Nov. 2020

    382. 382.

      Dik JH, Poelman R, Friedrich AW, Niesters HGM, Rossen JWA, Sinha B (2017) Integrated Stewardship Model Comprising Antimicrobial, Infection Prevention, and Diagnostic Stewardship (AID Stewardship). J Clin Microbiol 55(11):3306–3307

      CAS  PubMed  PubMed Central  Google Scholar 

    383. 383.

      Dik JW, Poelman R, Friedrich AW et al (2016) An integrated stewardship model: antimicrobial, infection prevention and diagnostic (AID). Future Microbiol 11(1):93–102

      CAS  PubMed  Google Scholar 

    384. 384.

      Manning ML, Septimus EJ, Ashley ESD et al (2018) Antimicrobial Stewardship and Infection Prevention-Leveraging the Synergy: A Position Paper Update. Infect Control Hosp Epidemiol 39(4):467–472

      PubMed  Google Scholar 

    385. 385.

      Mielke M (2018) Die Rolle der Infektionsprävention bei der Eindämmung der Antibiotikaresistenzentwicklung. Jede vermiedene Infektion trägt zur Reduktion des Antibiotikaeinsatzes bei. Bundesgesundheitsbl 61(5):553–561

      Google Scholar 

    386. 386.

      Septimus EJ (2018) Antimicrobial Resistance: An Antimicrobial/Diagnostic Stewardship and Infection Prevention Approach. Med Clin North Am 102(5):819–829

      PubMed  Google Scholar 

    387. 387.

      Schelenz S, Nwaka D, Hunter PR (2013) Longitudinal surveillance of bacteraemia in haematology and oncology patients at a UK cancer centre and the impact of ciprofloxacin use on antimicrobial resistance. J Antimicrob Chemother 68(6):1431–1438

      CAS  PubMed  Google Scholar 

    388. 388.

      Iacob S, Iacob DG (2019) Infectious Threats, the Intestinal Barrier, and Its Trojan Horse: Dysbiosis. Front Microbiol 10:1676

      PubMed  PubMed Central  Google Scholar 

    389. 389.

      Araoka H, Fujii T, Izutsu K et al (2012) Rapidly progressive fatal hemorrhagic pneumonia caused by Stenotrophomonas maltophilia in hematologic malignancy. Transpl Infect Dis 14(4):355–363

      CAS  PubMed  Google Scholar 

    390. 390.

      Arnan M, Gudiol C, Calatayud L et al (2011) Risk factors for, and clinical relevance of, faecal extended-spectrum beta-lactamase producing Escherichia coli (ESBL-EC) carriage in neutropenic patients with haematological malignancies. Eur J Clin Microbiol Infect Dis 30(3):355–360

      CAS  PubMed  Google Scholar 

    391. 391.

      Averbuch D, Avaky C, Harit M et al (2017) Non-fermentative Gram-negative rods bacteremia in children with cancer: a 14-year single-center experience. Infection 45(3):327–334

      CAS  PubMed  Google Scholar 

    392. 392.

      Averbuch D, Cordonnier C, Livermore DM et al (2011) (2013) Targeted therapy against multi-resistant bacteria in leukemic and hematopoietic stem cell transplant recipients: guidelines of the 4th European Conference on Infections in Leukemia (ECIL-4. Haematologica 98(12):1836–1847

      Google Scholar 

    393. 393.

      Bhusal Y, Mihu CN, Tarrand JJ, Rolston KV (2011) Incidence of fluoroquinolone-resistant and extended-spectrum beta-lactamase-producing Escherichia coli at a comprehensive cancer center in the United States. Chemotherapy 57(4):335–338

      CAS  PubMed  Google Scholar 

    394. 394.

      Brooke JS (2012) Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25(1):2–41

      CAS  PubMed  PubMed Central  Google Scholar 

    395. 395.

      Carattoli A, Fortini D, Galetti R et al (2013) Isolation of NDM-1-producing Pseudomonas aeruginosa sequence type ST235 from a stem cell transplant patient in Italy, May 2013. Euro Surveill 18(46):20633

      PubMed  Google Scholar 

    396. 396.

      Ciofi Degli AM, Bernaschi P, Carletti M et al (2014) An outbreak of extremely drug-resistant Pseudomonas aeruginosa in a tertiary care pediatric hospital in Italy. BMC Infect Dis 14:494

      Google Scholar 

    397. 397.

      Fukuta Y, Muder RR, Agha ME et al (2013) Risk factors for acquisition of multidrug-resistant Acinetobacter baumannii among cancer patients. Am J Infect Control 41(12):1249–1252

      PubMed  Google Scholar 

    398. 398.

      Gao W, Howden BP, Stinear TP (2018) Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr Opin Microbiol 41:76–82

      PubMed  Google Scholar 

    399. 399.

      Gudiol C, Bodro M, Simonetti A et al (2013) Changing aetiology, clinical features, antimicrobial resistance, and outcomes of bloodstream infection in neutropenic cancer patients. Clin Microbiol Infect 19(5):474–479

      CAS  PubMed  Google Scholar 

    400. 400.

      Gudiol C, Calatayud L, Garcia-Vidal C et al (2010) Bacteraemia due to extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) in cancer patients: clinical features, risk factors, molecular epidemiology and outcome. J Antimicrob Chemother 65(2):333–341

      CAS  PubMed  Google Scholar 

    401. 401.

      Haeusler GM, Mechinaud F, Daley AJ et al (2013) Antibiotic-resistant Gram-negative bacteremia in pediatric oncology patients—risk factors and outcomes. Pediatr Infect Dis J 32(7):723–726

      PubMed  Google Scholar 

    402. 402.

      Kim SB, Min YH, Cheong JW et al (2014) Incidence and risk factors for carbapenem- and multidrug-resistant Acinetobacter baumannii bacteremia in hematopoietic stem cell transplantation recipients. Scand J Infect Dis 46(2):81–88

      PubMed  Google Scholar 

    403. 403.

      Perez F, Adachi J, Bonomo RA (2014) Antibiotic-resistant gram-negative bacterial infections in patients with cancer. Clin Infect Dis 59(Suppl 5):S335–S339

      CAS  PubMed  PubMed Central  Google Scholar 

    404. 404.

      Snitkin ES, Zelazny AM, Thomas PJ et al (2012) Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 4(148):148ra116

    405. 405.

      Tada K, Kurosawa S, Hiramoto N et al (2013) Stenotrophomonas maltophilia infection in hematopoietic SCT recipients: high mortality due to pulmonary hemorrhage. Bone Marrow Transplant 48(1):74–79

      CAS  PubMed  Google Scholar 

    406. 406.

      Tschudin-Sutter S, Lucet JC, Mutters NT, Tacconelli E, Zahar JR, Harbarth S (2017) Contact Precautions for Preventing Nosocomial Transmission of Extended-Spectrum beta Lactamase-Producing Escherichia coli: A Point/Counterpoint Review. Clin Infect Dis 65(2):342–347

      PubMed  Google Scholar 

    407. 407.

      von Lilienfeld-Toal M, Maschmeyer G (2018) Challenges in Infectious Diseases for Haematologists. Oncol Res Treat 41(6):406–410

      Google Scholar 

    408. 408.

      Yeo CL, Chan DS, Earnest A et al (2012) Prospective audit and feedback on antibiotic prescription in an adult hematology-oncology unit in Singapore. Eur J Clin Microbiol Infect Dis 31(4):583–590

      PubMed  Google Scholar 

    409. 409.

      Yeo CL, Wu JE, Chung GW, Chan DS, Fisher D, Hsu LY (2012) Specialist trainees on rotation cannot replace dedicated consultant clinicians for antimicrobial stewardship of specialty disciplines. Antimicrob Resist Infect Control 1(1):36

      PubMed  PubMed Central  Google Scholar 

    410. 410.

      Trecarichi EM, Tumbarello M, Spanu T et al (2009) Incidence and clinical impact of extended-spectrum-beta-lactamase (ESBL) production and fluoroquinolone resistance in bloodstream infections caused by Escherichia coli in patients with hematological malignancies. J Infect 58(4):299–307

      PubMed  Google Scholar 

    411. 411.

      Aguiar EB, Maciel LC, Halpern M et al (2014) Outcome of bacteremia caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae after solid organ transplantation. Transplant Proc 46(6):1753–1756

      CAS  PubMed  Google Scholar 

    412. 412.

      Mikulska M, Del Bono V, Bruzzi P et al (2012) Mortality after bloodstream infections in allogeneic haematopoietic stem cell transplant (HSCT) recipients. Infection 40(3):271–278

      CAS  PubMed  Google Scholar 

    413. 413.

      Tang Y, Wu X, Cheng Q, Li X (2020) Inappropriate initial antimicrobial therapy for hematological malignancies patients with Gram-negative bloodstream infections. Infection 48(1):109–116

      CAS  PubMed  Google Scholar 

    414. 414.

      Shono Y, Docampo MD, Peled JU et al (2016) Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med 8(339):339ra371

    415. 415.

      Zimmermann P, Curtis N (2019) The effect of antibiotics on the composition of the intestinal microbiota—a systematic review. J Infect 79(6):471–489

      PubMed  Google Scholar 

    416. 416.

      Palacios-Baena ZR, Gutierrez-Gutierrez B, Calbo E et al (2017) Empiric Therapy With Carbapenem-Sparing Regimens for Bloodstream Infections due to Extended-Spectrum beta-Lactamase-Producing Enterobacteriaceae: Results From the INCREMENT Cohort. Clin Infect Dis 65(10):1615–1623

      CAS  PubMed  PubMed Central  Google Scholar 

    417. 417.

      Short E, Esterly J, Postelnick M, Ong J, McLaughlin M (2014) Disposition of linezolid or daptomycin in Enterococcal bloodstream infections according to vancomycin resistant Enterococcus colonization. Antimicrob Resist Infect Control 3(1):37

      PubMed  PubMed Central  Google Scholar 

    418. 418.

      Kamboj M, Cohen N, Huang YT et al (2019) Impact of Empiric Treatment for Vancomycin-Resistant Enterococcus in Colonized Patients Early after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 25(3):594–598

      CAS  PubMed  Google Scholar 

    419. 419.

      Cervantes J (2016) Use your antibiotics wisely. Consequences to the intestinal microbiome. FEMS Microbiol Lett 363(nw081):10

      Google Scholar 

    420. 420.

      Martinez-Nadal G, Puerta-Alcalde P, Gudiol C et al (2020) Inappropriate Empirical Antibiotic Treatment in High-risk Neutropenic Patients With Bacteremia in the Era of Multidrug Resistance. Clin Infect Dis 70(6):1068–1074

      PubMed  Google Scholar 

    421. 421.

      Trubiano JA, Beekmann SE, Worth LJ et al (2016) Improving Antimicrobial Stewardship by Antibiotic Allergy Delabeling: Evaluation of Knowledge, Attitude, and Practices Throughout the Emerging Infections Network. Open Forum Infect Dis 3(3):ofw153

      PubMed  PubMed Central  Google Scholar 

    422. 422.

      Trubiano JA, Chen C, Cheng AC, Grayson ML, Slavin MA, Thursky KA (2016) Antimicrobial allergy ‘labels’ drive inappropriate antimicrobial prescribing: lessons for stewardship. J Antimicrob Chemother 71(6):1715–1722

      CAS  PubMed  Google Scholar 

    423. 423.

      Trubiano JA, Slavin MA, Thursky KA, Grayson ML, Phillips EJ (2019) Beta-Lactam and Sulfonamide Allergy Testing Should Be a Standard of Care in Immunocompromised Hosts. J Allergy Clin Immunol Pract 7(7):2151–2153

      PubMed  PubMed Central  Google Scholar 

    424. 424.

      Stover KR, Barber KE, Wagner JL (2019) Allergic Reactions and Cross-Reactivity Potential with Beta-Lactamase Inhibitors. Pharm (basel) 7(3):77

      Google Scholar 

    425. 425.

      Stover KR, Bland CM, Gallagher JC (2017) The Point of Antimicrobial Susceptibility Testing Is to Inform Antimicrobial Prescribing. Clin Infect Dis 64(1):103–104

      PubMed  Google Scholar 

    426. 426.

      Stone CA Jr., Trubiano J, Coleman DT, Rukasin CRF, Phillips EJ (2020) The challenge of de-labeling penicillin allergy. Allergy 75(2):273–288

      CAS  PubMed  Google Scholar 

    427. 427.

      Huang KG, Cluzet V, Hamilton K, Fadugba O (2018) The Impact of Reported Beta-Lactam Allergy in Hospitalized Patients With Hematologic Malignancies Requiring Antibiotics. Clin Infect Dis 67(1):27–33

      PubMed  Google Scholar 

    428. 428.

      Agrawal S, Barnes R, Bruggemann RJ, Rautemaa-Richardson R, Warris A (2016) The role of the multidisciplinary team in antifungal stewardship. J Antimicrob Chemother 71(Suppl 2):ii37–ii42

    429. 429.

      Aguado JM, Silva JT, Bouza E (2016) Conclusion and future perspectives on antifungal stewardship. J Antimicrob Chemother 71(Suppl 2):ii43–ii44

    430. 430.

      Farmakiotis D, Kontoyiannis DP (2017) Epidemiology of antifungal resistance in human pathogenic yeasts: current viewpoint and practical recommendations for management. Int J Antimicrob Agents 50(3):318–324

      CAS  PubMed  Google Scholar 

    431. 431.

      Hamdy RF, Zaoutis TE, Seo SK (2017) Antifungal stewardship considerations for adults and pediatrics. Virulence 8(6):658–672

      PubMed  Google Scholar 

    432. 432.

      Lachenmayr SJ, Berking S, Horns H, Strobach D, Ostermann H, Berger K (2018) Antifungal treatment in haematological and oncological patients: Need for quality assessment in routine care. Mycoses 61(7):464–471

      PubMed  Google Scholar 

    433. 433.

      Mellinghoff SC, Hartmann P, Cornely FB et al (2018) Analyzing candidemia guideline adherence identifies opportunities for antifungal stewardship. Eur J Clin Microbiol Infect Dis 37(8):1563–1571

      CAS  PubMed  Google Scholar 

    434. 434.

      Micallef C, Aliyu SH, Santos R, Brown NM, Rosembert D, Enoch DA (2015) Introduction of an antifungal stewardship programme targeting high-cost antifungals at a tertiary hospital in Cambridge, England. J Antimicrob Chemother 70(6):1908–1911

      CAS  PubMed  Google Scholar 

    435. 435.

      Micallef C, Ashiru-Oredope D, Hansraj S et al (2017) An investigation of antifungal stewardship programmes in England. J Med Microbiol 66(11):1581–1589

      PubMed  Google Scholar 

    436. 436.

      Munoz P, Bouza E, group Cs (2016) The current treatment landscape: the need for antifungal stewardship programmes. J Antimicrob Chemother 71(suppl 2):ii5–ii12

    437. 437.

      Ruhnke M (2014) Antifungal stewardship in invasive Candida infections. Clin Microbiol Infect 20(Suppl 6):11–18

      PubMed  Google Scholar 

    438. 438.

      Schwartz IS, Patterson TF (2018) The Emerging Threat of Antifungal Resistance in Transplant Infectious Diseases. Curr Infect Dis Rep 20(3):2

      PubMed  Google Scholar 

    439. 439.

      Valerio M, Munoz P, Rodriguez-Gonzalez C, Sanjurjo M, Guinea J, Bouza E (2015) Training should be the first step toward an antifungal stewardship program. Enferm Infecc Microbiol Clin 33(4):221–227

      PubMed  Google Scholar 

    440. 440.

      Valerio M, Munoz P, Rodriguez CG et al (2015) Antifungal stewardship in a tertiary-care institution: a bedside intervention. Clin Microbiol Infect 21(5)492.e1–492.e9

    441. 441.

      Valerio M, Rodriguez-Gonzalez CG, Munoz P et al (2014) Evaluation of antifungal use in a tertiary care institution: antifungal stewardship urgently needed. J Antimicrob Chemother 69(7):1993–1999

      CAS  PubMed  Google Scholar 

    442. 442.

      Valerio M, Vena A, Bouza E et al (2015) How much European prescribing physicians know about invasive fungal infections management? BMC Infect Dis 15:80

      PubMed  PubMed Central  Google Scholar 

    443. 443.

      Wattal C, Chakrabarti A, Oberoi JK et al (2017) Issues in antifungal stewardship: an opportunity that should not be lost. J Antimicrob Chemother 72(4):969–974

      CAS  PubMed  Google Scholar 

    444. 444.

      Lachenmayr SJ, Strobach D, Berking S, Horns H, Berger K, Ostermann H (2019) Improving quality of antifungal use through antifungal stewardship interventions. Infection 47(4):603–610

      PubMed  Google Scholar 

    445. 445.

      Seo SK, Lo K, Abbo LM (2016) Current State of Antimicrobial Stewardship at Solid Organ and Hematopoietic Cell Transplant Centers in the United States. Infect Control Hosp Epidemiol 37(10):1195–1200

      PubMed  PubMed Central  Google Scholar 

    446. 446.

      Abbo LM, Ariza-Heredia EJ (2014) Antimicrobial stewardship in immunocompromised hosts. Infect Dis Clin North Am 28(2):263–279

      PubMed  Google Scholar 

    447. 447.

      Cordonnier C, Pautas C, Maury S et al (2009) Empirical versus preemptive antifungal therapy for high-risk, febrile, neutropenic patients: a randomized, controlled trial. Clin Infect Dis 48(8):1042–1051

      CAS  PubMed  Google Scholar 

    448. 448.

      Cordonnier C, Robin C, Alanio A, Bretagne S (2014) Antifungal pre-emptive strategy for high-risk neutropenic patients: why the story is still ongoing. Clin Microbiol Infect 20(Suppl 6):27–35

      CAS  PubMed  Google Scholar 

    449. 449.

      Dumford DM, Skalweit M (2016) Antibiotic-Resistant Infections and Treatment Challenges in the Immunocompromised Host. Infect Dis Clin North Am 30(2):465–489

      PubMed  Google Scholar 

    450. 450.

      Gyssens IC, Kern WV, Livermore DM, Ecil ajvoEEI, ESCMID Eo (2013) The role of antibiotic stewardship in limiting antibacterial resistance among hematology patients. Haematologica 98(12):1821–1825

    451. 451.

      Hamandi B, Husain S, Humar A, Papadimitropoulos EA (2014) Impact of infectious disease consultation on the clinical and economic outcomes of solid organ transplant recipients admitted for infectious complications. Clin Infect Dis 59(8):1074–1082

      PubMed  Google Scholar 

    452. 452.

      la Martire G, Robin C, Oubaya N et al (2018) De-escalation and discontinuation strategies in high-risk neutropenic patients: an interrupted time series analyses of antimicrobial consumption and impact on outcome. Eur J Clin Microbiol Infect Dis 37(10):1931–1940

      PubMed  Google Scholar 

    453. 453.

      Lortholary O, Lefort A, Tod M et al (2008) Pharmacodynamics and pharmacokinetics of antibacterial drugs in the management of febrile neutropenia. Lancet Infect Dis 8(10):612–620

      CAS  PubMed  Google Scholar 

    454. 454.

      Mokart D, Slehofer G, Lambert J et al (2014) De-escalation of antimicrobial treatment in neutropenic patients with severe sepsis: results from an observational study. Intensive Care Med 40(1):41–49

      CAS  PubMed  Google Scholar 

    455. 455.

      Paskovaty A, Pastores SM, Gedrimaite Z, Kostelecky N, Riedel ER, Seo SK (2015) Antimicrobial de-escalation in septic cancer patients: is it safe to back down? Intensive Care Med 41(11):2022–2023

      PubMed  PubMed Central  Google Scholar 

    456. 456.

      Reinecke J, Lowas S, Snowden J, Neemann K (2019) Blood Stream Infections and Antibiotic Utilization in Pediatric Leukemia Patients With Febrile Neutropenia. J Pediatr Hematol Oncol 41(4):251–255

      PubMed  Google Scholar 

    457. 457.

      Rosa R, Simkins J, Camargo JF, Martinez O, Abbo LM (2016) Solid organ transplant antibiograms: an opportunity for antimicrobial stewardship. Diagn Microbiol Infect Dis 86(4):460–463

      PubMed  Google Scholar 

    458. 458.

      Rosa RG, Dos SRP, Goldani LZ (2014) Mortality related to coagulase-negative staphylococcal bacteremia in febrile neutropenia: A cohort study. Can J Infect Dis Med Microbiol 25(1):e14–e17

      PubMed  PubMed Central  Google Scholar 

    459. 459.

      Rosa RG, Goldani LZ (2014) Cohort study of the impact of time to antibiotic administration on mortality in patients with febrile neutropenia. Antimicrob Agents Chemother 58(7):3799–3803

      PubMed  PubMed Central  Google Scholar 

    460. 460.

      Rosa RG, Goldani LZ, dos Santos RP (2014) Association between adherence to an antimicrobial stewardship program and mortality among hospitalised cancer patients with febrile neutropaenia: a prospective cohort study. BMC Infect Dis 14:286

    461. 461.

      Tverdek FP, Rolston KV, Chemaly RF (2012) Antimicrobial stewardship in patients with cancer. Pharmacotherapy 32(8):722–734

      PubMed  Google Scholar 

    462. 462.

      Vicente M, Al-Nahedh M, Parsad S, Knoebel RW, Pisano J, Pettit NN (2017) Impact of a clinical pathway on appropriate empiric vancomycin use in cancer patients with febrile neutropenia. J Oncol Pharm Pract 23(8):575–581

      CAS  PubMed  Google Scholar 

    463. 463.

      Wattier RL, Levy ER, Sabnis AJ, Dvorak CC, Auerbach AD (2017) Reducing Second Gram-Negative Antibiotic Therapy on Pediatric Oncology and Hematopoietic Stem Cell Transplantation Services. Infect Control Hosp Epidemiol 38(9):1039–1047

      PubMed  Google Scholar 

    464. 464.

      Zhu LL, Zhou Q (2018) Optimal infusion rate in antimicrobial therapy explosion of evidence in the last five years. Infect Drug Resist 11:1105–1117

      CAS  PubMed  PubMed Central  Google Scholar 

    465. 465.

      Robilotti E, Holubar M, Seo SK, Deresinski S (2017) Feasibility and applicability of antimicrobial stewardship in immunocompromised patients. Curr Opin Infect Dis 30(4):346–353

      PubMed  Google Scholar 

    466. 466.

      Puerta-Alcalde P, Cardozo C, Suárez-Lledó M et al (2019) Current time-to-positivity of blood cultures in febrile neutropenia: a tool to be used in stewardship de-escalation strategies. Clin Microbiol Infect 25(4):447–453

      CAS  PubMed  Google Scholar 

    467. 467.

      Abele-Horn M, de With K, Seifert J et al (2020) Strukturelle und personelle Voraussetzungen für die Sicherung einer rationalen Antiinfektivaverordnung in Krankenhäusern. Bundesgesundheitsbl 63(6):749–760

      Google Scholar 

    468. 468.

      Sax H, Clack L, Touveneau S, Jantarada Fda L, Pittet D, Zingg W (2013) Implementation of infection control best practice in intensive care units throughout Europe: a mixed-method evaluation study. Implement Sci 8:24

      PubMed  PubMed Central  Google Scholar 

    469. 469.

      Storr J, Twyman A, Zingg W et al (2017) Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations. Antimicrob Resist Infect Control 6:6

      PubMed  PubMed Central  Google Scholar 

    470. 470.

      Goff DA, Kullar R, Bauer KA, File TM Jr. (2017) Eight Habits of Highly Effective Antimicrobial Stewardship Programs to Meet the Joint Commission Standards for Hospitals. Clin Infect Dis 64(8):1134–1139

      PubMed  Google Scholar 

    471. 471.

      Kern W, Fellhauer M, Hug M et al (2015) Recent antibiotic use in German acute care hospitals—From benchmarking to improved prescribing and quality care. Dtsch Med Wochenschr 140:e237–e246

      CAS  PubMed  Google Scholar 

    472. 472.

      Thern J, de With K, Strauss R, Steib-Bauert M, Weber N, Kern WV (2014) Selection of hospital antimicrobial prescribing quality indicators: a consensus among German antibiotic stewardship (ABS) networkers. Infection 42(2):351–362

      CAS  PubMed  Google Scholar 

    473. 473.

      Davies HD (2016) Infectious Complications With the Use of Biologic Response Modifiers in Infants and Children. Pediatrics 138(2):e20161209

      PubMed  Google Scholar 

    474. 474.

      Reinwald M, Silva JT, Mueller NJ et al (2018) ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Intracellular signaling pathways: tyrosine kinase and mTOR inhibitors). Clin Microbiol Infect 24(Suppl 2):S53–S70

      PubMed  Google Scholar 

    475. 475.

      Baddley JW, Cantini F, Goletti D et al (2018) ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [I]: anti-tumor necrosis factor-alpha agents). Clin Microbiol Infect 24 (Suppl 2):S10–S20

    476. 476.

      Drgona L, Gudiol C, Lanini S, Salzberger B, Ippolito G, Mikulska M (2018) ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Agents targeting lymphoid or myeloid cells surface antigens [II]: CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4). Clin Microbiol Infect 24(Suppl 2):S83–S94

      PubMed  Google Scholar 

    477. 477.

      Mikulska M, Lanini S, Gudiol C et al (2018) ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Agents targeting lymphoid cells surface antigens [I]: CD19, CD20 and CD52). Clin Microbiol Infect 24(Suppl 2):S71–S82

      CAS  PubMed  Google Scholar 

    478. 478.

      Ioannou P, Vamvoukaki R, Samonis G (2019) Rhodotorula species infections in humans: A systematic review. Mycoses 62(2):90–100

      PubMed  Google Scholar 

    479. 479.

      Potenza L, Chitasombat MN, Klimko N et al (2019) Rhodotorula infection in haematological patient: Risk factors and outcome. Mycoses 62(3):223–229

      CAS  PubMed  Google Scholar 

    480. 480.

      Fabiani S, Fortunato S, Petrini M, Bruschi F (2017) Allogeneic hematopoietic stem cell transplant recipients and parasitic diseases: A review of the literature of clinical cases and perspectives to screen and follow-up active and latent chronic infections. Transpl Infect Dis. https://doi.org/10.1111/tid.12669

      Article  PubMed  Google Scholar 

    481. 481.

      Peixoto D, Prestes DP (2019) Parasitic Infections of the Stem Cell Transplant Recipient and the Hematologic Malignancy Patient, Including Toxoplasmosis and Strongyloidiasis. Infect Dis Clin North Am 33(2):567–591

      PubMed  Google Scholar 

    482. 482.

      Michel BA, Hunder GG, Bloch DA, Calabrese LH (1992) Hypersensitivity vasculitis and Henoch-Schonlein purpura: a comparison between the 2 disorders. J Rheumatol 19(5):721–728

      CAS  PubMed  Google Scholar 

    483. 483.

      Chang HJ, Miller HL, Watkins N et al (1998) An epidemic of Malassezia pachydermatis in an intensive care nursery associated with colonization of health care workers’ pet dogs. N Engl J Med 338(11):706–711

      CAS  PubMed  Google Scholar 

    484. 484.

      Bundeszentrale für gesundheitliche Aufklärung (BZgA) (o.D.) Hygiene und Tiere. https://www.infektionsschutz.de/hygienetipps/hygiene-und-tiere.html. Zugegriffen: 1. Nov. 2020

    485. 485.

      Institut für Hygiene und Öffentliche Gesundheit der Universität Bonn (2007) Hygiene-Tipps für Kids – Umgang mit Tieren. Institut für Hygiene und Öffentliche Gesundheit (IHPH), Bonn, , https://hygiene-tipps-fuer-kids.de/files/download/pdf/Elternseiten/3_6_TiereMerkblatt.pdf. Zugegriffen: 1. Nov. 2020

    Download references

    Rights and permissions

    Reprints and Permissions

    About this article

    Verify currency and authenticity via CrossMark

    Cite this article

    Anforderungen an die Infektionsprävention bei der medizinischen Versorgung von immunsupprimierten Patienten. Bundesgesundheitsbl 64, 232–264 (2021). https://doi.org/10.1007/s00103-020-03265-x

    Download citation