Therapeutische Immunisierungen gegen Tumore und neurodegenerative Erkrankungen

Therapeutic vaccination for tumors and neurodegenerative diseases

Zusammenfassung

Therapeutische Impfstoffe sollen die körpereigene Immunabwehr bei bereits bestehenden Erkrankungen aktivieren.

Wir diskutieren in diesem Artikel die Anwendung therapeutischer Impfstoffe in den relevanten Therapiegebieten Onkologie und neurodegenerative Erkrankungen. Klinische und regulatorische Aspekte bei der Herstellung und Anwendung aktiv personalisierter Tumorimpfstoffe werden eingehend besprochen. Dies betrifft den Einsatz und die regulatorische Einstufung von genomischen Sequenzanalysen zur Identifizierung tumorspezifischer Mutationen, Kombinationstherapien von Tumorimpfstoffen mit Checkpointinhibitoren, klinische Studiendesigns, Verwendung von geeigneten Adjuvanzien und Wirkstoffen. Zunehmend fallen bei personalisierten Therapien große Datenmengen an (Big Data). Wir adressieren kurz die Bedeutung und die Verwendbarkeit von Big Data in der Arzneimittelregulation.

Abstract

Therapeutic vaccines are intended for the treatment of established diseases by harnessing the patient’s own immune system. In this article we discuss therapeutic areas that are of relevance for therapeutic vaccination, i.e., oncology and neurodegenerative diseases. Clinical and regulatory aspects related to the manufacture and clinical use of actively personalized cancer vaccines are thoroughly reviewed. This applies to the regulatory classification of genomic sequencing approaches to identify tumor-specific mutations, combination therapies with checkpoint inhibitors, clinical study designs, and the use of suitable adjuvants and drug substances. Huge amounts of data (big data) are increasingly being generated in the area of personalized therapies; we briefly address the impact and usability of big data in regulatory procedures.

This is a preview of subscription content, log in to check access.

Literatur

  1. 1.

    Hollingsworth RE, Jansen K (2019) Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 4:7. https://doi.org/10.1038/s41541-019-0103-y

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Hurez V, Padrón ÁS, Svatek RS, Curiel TJ (2017) Considerations for successful cancer immunotherapy in aged hosts. Clin Exp Immunol 187(1):53–63. https://doi.org/10.1111/cei.12875

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8(1):59–73. https://doi.org/10.1038/nri2216

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Rammensee H‑G, Singh-Jasuja H (2013) HLA ligandome tumor antigen discovery for personalized vaccine approach. Expert Rev Vaccines 12(10):1211–1217. https://doi.org/10.1586/14760584.2013.836911

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Hutchison S, Pritchard AL (2018) Identifying neoantigens for use in immunotherapy. Mamm Genome 29(11):714–730. https://doi.org/10.1007/s00335-018-9771-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Britten CM, Singh-Jasuja H, Flamion B et al (2013) The regulatory landscape for actively personalized cancer immunotherapies. Nat Biotechnol 31(10):880–882. https://doi.org/10.1038/nbt.2708

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Sahin U, Derhovanessian E, Miller M et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547(7662):222–226. https://doi.org/10.1038/nature23003

    CAS  Article  Google Scholar 

  8. 8.

    Hilf N, Kuttruff-Coqui S, Frenzel K et al (2019) Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565(7738):240–245. https://doi.org/10.1038/s41586-018-0810-y

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Ma M, Liu J, Jin S, Wang L (2020) Development of tumour peptide vaccines: From universalization to personalization. Scand J Immunol. https://doi.org/10.1111/sji.12875

    Article  PubMed  Google Scholar 

  10. 10.

    Sahin U, Türeci Ö (2018) Personalized vaccines for cancer immunotherapy. Science 359(6382):1355–1360. https://doi.org/10.1126/science.aar7112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    EMA (2018) Guideline on good pharmacogenomic practice. EMA/CHMP/718998/2016

  12. 12.

    FDA (2018) Considerations for Design, Development, and Analytical Validation of Next Generation Sequencing (NGS)—Based In Vitro Diagnostics (IVDs) Intended to Aid in the Diagnosis of Suspected Germline Diseases. Guidance for Stakeholders and Food and Drug Administration Staff

  13. 13.

    Frampton GM, Fichtenholtz A, Otto GA et al (2013) Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31(11):1023–1031. https://doi.org/10.1038/nbt.2696

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Jennings LJ, Arcila ME, Corless C et al (2017) Guidelines for validation of next-generation sequencing-based oncology panels: a joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn 19(3):341–365. https://doi.org/10.1016/j.jmoldx.2017.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Donini C, D’Ambrosio L, Grignani G, Aglietta M, Sangiolo D (2018) Next generation immune-checkpoints for cancer therapy. J Thorac Dis 10(Suppl 13):S1581–S1601. https://doi.org/10.21037/jtd.2018.02.79

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Mougel A, Terme M, Tanchot C (2019) Therapeutic cancer vaccine and combinations with antiangiogenic therapies and immune checkpoint blockade. Front Immunol 10:467. https://doi.org/10.3389/fimmu.2019.00467

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Strauss J, Madan RA, Gulley JL (2016) Considerations for the combination of anticancer vaccines and immune checkpoint inhibitors. Expert Opin Biol Ther 16(7):895–901. https://doi.org/10.1517/14712598.2016.1170805

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Fennemann FL, de Vries IJM, Figdor CG, Verdoes M (2019) Attacking tumors from all sides: personalized multiplex vaccines to tackle intratumor heterogeneity. Front Immunol 10:824. https://doi.org/10.3389/fimmu.2019.00824

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Aldous AR, Dong JZ (2018) Personalized neoantigen vaccines: a new approach to cancer immunotherapy. Bioorg Med Chem 26(10):2842–2849. https://doi.org/10.1016/j.bmc.2017.10.021

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Ott PA, Hu Z, Keskin DB et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547(7662):217–221. https://doi.org/10.1038/nature22991

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    FDA (2011) Guidance for Industry. Clinical Considerations for Therapeutic Cancer Vaccines

  22. 22.

    EMA (2017) Guideline on the evaluation of anticancer medicinal products in man. EMA/CHMP/205/95 Rev.5

  23. 23.

    Mandler M, Santic R, Gruber P et al (2015) Tailoring the antibody response to aggregated Aß using novel Alzheimer-vaccines. PLoS ONE 10(1):e115237. https://doi.org/10.1371/journal.pone.0115237

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Gilman S, Koller M, Black RS et al (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64(9):1553–1562. https://doi.org/10.1212/01.WNL.0000159740.16984.3C

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Kwan P, Konno H, Chan KY, Baum L (2020) Rationale for the development of an Alzheimer’s disease vaccine. Hum Vaccin Immunother 16(3):645–653. https://doi.org/10.1080/21645515.2019.1665453

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Hüll M, Sadowsky C, Arai H et al (2017) Long-term extensions of randomized vaccination trials of ACC-001 and QS-21 in mild to moderate alzheimer’s disease. Curr Alzheimer Res 14(7):696–708. https://doi.org/10.2174/1567205014666170117101537

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Hung S‑Y, Fu W‑M (2017) Drug candidates in clinical trials for Alzheimer’s disease. J Biomed Sci 24(1):47. https://doi.org/10.1186/s12929-017-0355-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Mandler M, Valera E, Rockenstein E et al (2014) Next-generation active immunization approach for synucleinopathies: implications for Parkinson’s disease clinical trials. Acta Neuropathol 127(6):861–879. https://doi.org/10.1007/s00401-014-1256-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Schneeberger A, Tierney L, Mandler M (2016) Active immunization therapies for Parkinson’s disease and multiple system atrophy. Mov Disord 31(2):214–224. https://doi.org/10.1002/mds.26377

    Article  PubMed  Google Scholar 

  30. 30.

    Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W (2018) CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol 18(10):635–647. https://doi.org/10.1038/s41577-018-0044-0

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Novak P, Schmidt R, Kontsekova E et al (2018) FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res Ther 10(1):108. https://doi.org/10.1186/s13195-018-0436-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Vandenberghe R, Riviere M‑E, Caputo A et al (2017) Active Aβ immunotherapy CAD106 in Alzheimer’s disease: a phase 2b study. Alzheimers Dement 3(1):10–22. https://doi.org/10.1016/j.trci.2016.12.003

    Article  Google Scholar 

  33. 33.

    Sahin U, Karikó K, Türeci Ö (2014) mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov 13(10):759–780. https://doi.org/10.1038/nrd4278

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Hinz T, Kallen K, Britten CM et al (2017) The European regulatory environment of RNA-based vaccines. Methods Mol Biol 1499:203–222. https://doi.org/10.1007/978-1-4939-6481-9_13

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Kranz LM, Diken M, Haas H et al (2016) Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534(7607):396–401. https://doi.org/10.1038/nature18300

    CAS  Article  Google Scholar 

  36. 36.

    Pardi N, Hogan MJ, Weissman D (2020) Recent advances in mRNA vaccine technology. Curr Opin Immunol 65:14–20. https://doi.org/10.1016/j.coi.2020.01.008

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Erdmann M, Uslu U, Wiesinger M et al (2018) Automated closed-system manufacturing of human monocyte-derived dendritic cells for cancer immunotherapy. J Immunol Methods 463:89–96. https://doi.org/10.1016/j.jim.2018.09.012

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    EU (2017) Guidelines on Good Manufacturing Practice specific to Advanced Therapy Medicinal Products

  39. 39.

    EMA (2005) Guidelines on adjuvants in vaccines for human use. EMEA/CHMP/VEG/134716/2004

  40. 40.

    EMA (2006) Explanary note on immunomodulators for the guideline on adjuvants in vaccines for human use. EMEA/CHMP/VWP/244894/2006

  41. 41.

    Disis ML, Bernhard H, Jaffee EM (2009) Use of tumour-responsive T cells as cancer treatment. Lancet 373(9664):673–683. https://doi.org/10.1016/S0140-6736(09)60404-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Steinhagen F, Kinjo T, Bode C, Klinman DM (2011) TLR-based immune adjuvants. Vaccine 29(17):3341–3355. https://doi.org/10.1016/j.vaccine.2010.08.002

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Gouttefangeas C, Rammensee H‑G (2018) Personalized cancer vaccines: adjuvants are important, too. Cancer Immunol Immunother 67(12):1911–1918. https://doi.org/10.1007/s00262-018-2158-4

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Ziegler A, Hinz T, Kalinke U (2019) RNA-based adjuvants: Immunoenhancing effect on antiviral vaccines and regulatory considerations. Crit Rev Immunol 39(1):1–14. https://doi.org/10.1615/CritRevImmunol.2019027183

    Article  PubMed  Google Scholar 

  45. 45.

    Heidenreich R, Jasny E, Kowalczyk A et al (2015) A novel RNA-based adjuvant combines strong immunostimulatory capacities with a favorable safety profile. Int J Cancer 137(2):372–384. https://doi.org/10.1002/ijc.29402

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    EMA (2020) EMA. https://www.ema.europa.eu/en/human-regulatory/marketing-authorisation/advanced-therapies/advanced-therapy-classification/summaries-scientific-recommendations-classification-advanced-therapy-medicinal-products. Zugegriffen: 05.10.2020

  47. 47.

    HMA/EMA (2020) Joint task force on big data: Bioanalytical omics subgroup report.

  48. 48.

    Shirani A, Okuda DT, Stüve O (2016) Therapeutic advances and future prospects in progressive forms of multiple sclerosis. Neurotherapeutics 13(1):58–69. https://doi.org/10.1007/s13311-015-0409-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Yang A, Farmer E, Wu TC, Hung C‑F (2016) Perspectives for therapeutic HPV vaccine development. J Biomed Sci 23(1):75. https://doi.org/10.1186/s12929-016-0293-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Bachmann MF, Jennings GT (2011) Therapeutic vaccines for chronic diseases: successes and technical challenges. Philos Trans R Soc Lond B Biol Sci 366(1579):2815–2822. https://doi.org/10.1098/rstb.2011.0103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Greenwood B (2014) The contribution of vaccination to global health: past, present and future. Philos Trans R Soc Lond B Biol Sci 369(1645):20130433. https://doi.org/10.1098/rstb.2013.0433

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Danksagung

Wir danken Herrn Dr. Benjamin Hofner für dessen Review der klinischen Aspekte.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Hinz.

Ethics declarations

Interessenkonflikt

V. Scheer, M. Goldammer, S. Flindt, G. van Zandbergen und T. Hinz geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scheer, V., Goldammer, M., Flindt, S. et al. Therapeutische Immunisierungen gegen Tumore und neurodegenerative Erkrankungen. Bundesgesundheitsbl (2020). https://doi.org/10.1007/s00103-020-03226-4

Download citation

Schlüsselwörter

  • Adjuvans
  • Big Data
  • mRNA
  • Peptide
  • Therapeutische Impfstoffe

Keywords

  • Adjuvant
  • Big data
  • mRNA
  • Peptide
  • Therapeutic vaccine