Schnelltestdiagnostik sexuell übertragbarer Infektionen

Gemeinsame Stellungnahme von DSTIG, RKI, PEI sowie den Referenzzentren für HIV, HBV und HCV und Konsiliarlaboren für Chlamydien, Gonokokken und Treponema pallidum

Rapid diagnosis of sexually transmitted infections

Joint statement of DSTIG, RKI, and PEI, as well as the reference centers for HIV, HBV, and HCV and consulting laboratories for Chlamydia, gonococci, and Treponema pallidum

Zusammenfassung

Im Februar 2019 fand am Robert Koch-Institut (RKI) in Berlin das 4. Expertentreffen zu Schnelltests in der Diagnostik sexuell übertragbarer Infektionen (STI) statt. Vertreter der Deutschen STI-Gesellschaft (DSTIG e. V.), des RKI, des Paul-Ehrlich-Instituts (PEI), der Referenzzentren für HIV, HBV und HCV sowie der Konsiliarlabore für Chlamydien, Gonokokken und Treponema pallidum diskutierten neue Entwicklungen im Bereich der Schnelltestdiagnostik und neue Aspekte im Rahmen ihrer Anwendung.

Daraus resultierte die vorliegende Überarbeitung der gemeinsamen Stellungnahme zur Schnelltestdiagnostik von STI aus dem Jahr 2017. Nach der im Mai 2017 in Kraft getretenen EU-Verordnung 2017/746 zu Medizinprodukten und In-vitro-Diagnostika (IVD) bestehen strengere regulatorische Anforderungen für Schnelltests, die v. a. die Konformität der Herstellung und die Leistungsbewertung für Erreger der Risikogruppe D betreffen (HIV, HBV, HCV, T. pallidum). Für den Einsatz in niedrigschwelligen Beratungssettings sind einige Schnelltests für HIV, HCV und T. pallidum geeignet, deren Leistungsfähigkeit und diagnostische Genauigkeit in Studien evaluiert wurden oder die von der Weltgesundheitsorganisation (WHO) präqualifiziert wurden. Diese beinhalten auch einige HIV-Schnelltests, die für die Eigenanwendung (HIV-Selbsttest) zur Verfügung stehen. Auch einige HBV-Schnelltests, die auf dem Nachweis von HBs-Antigen (HBsAg) basieren, haben die WHO-Präqualifizierung erhalten. Sie können aber bei niedriger HBsAg-Konzentration, z. B. bei HIV-Co-Infizierten unter antiretroviraler Therapie, falsch-negativ ausfallen. Für Chlamydia trachomatis (CT) und Neisseria gonorrhoeae (NG) sind antigenbasierte Schnelltests nicht geeignet, um Infektionen zuverlässig nachzuweisen. PCR-basierte CT/NG-Schnelltests haben dagegen eine höhere diagnostische Genauigkeit und können als Point-of-Care-Tests eingesetzt werden. PCR-Schnelltests für NG liefern jedoch keine Informationen zur Antibiotikaresistenz.

Abstract

In February 2019, the fourth expert meeting on rapid diagnostic tests (RDTs) for sexually transmitted infections (STI) was held at the Robert Koch Institute (RKI) in Berlin. Novel technical developments and new aspects of RDT applications were discussed by representatives from the German STI Society (DSTIG); RKI; the Paul Ehrlich Institute; national reference centers for HIV, HBV, and HCV; and reference laboratories for Chlamydia, gonococci, and Treponema pallidum.

As a result of this meeting, we present a revision of the joint statement on STI diagnostics with RDTs from 2017. The Regulation (EU) 2017/746 of the European Parliament and of the Council on in vitro diagnostic medical devices became effective in May 2017 and includes more stringent regulatory requirements for RDTs, mainly concerning conformity of manufacturing processes and performance characteristics of class D in vitro diagnostics (detection of HIV, HBV, HCV, and T. pallidum). Some RDTs for HIV, HCV, and T. pallidum have been evaluated in clinical studies and/or were WHO prequalified and may be used in low-threshold services. Among them are some HIV RDTs available and approved for self-testing. In addition, some HBV RDTs based on detection of HBs antigen (HBsAg) received WHO prequalification. However, false negative results may occur in samples with low HBsAg levels, as for instance in HIV-coinfected patients receiving antiretroviral therapy. For Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG), antigen-based RDTs still do not allow reliable detection of infection. Only PCR-based CT/NG RDTs possess sufficient diagnostic accuracy to be used as point-of-care tests. Rapid PCR tests for NG, however, do not provide any information about antimicrobial resistance.

This is a preview of subscription content, log in to check access.

Literatur

  1. 1.

    WHO (2016) Global health sector strategy on sexually transmitted infections 2016–2021. Towards ending STIs. Report No.: WHO/RHR/16.09. Geneva: World Health Organization; 2016. https://www.who.int/reproductivehealth/publications/rtis/ghss-stis/en/. Zugegriffen: 14. Apr. 2020

  2. 2.

    Rowley J, Vander Hoorn S, Korenromp E et al (2019) Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ 97:548–562P. https://doi.org/10.2471/BLT.18.228486

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Newman L, Rowley J, Vander Hoorn S et al (2015) Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS ONE 10:e143304. https://doi.org/10.1371/journal.pone.0143304

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Nenoff P, Manos A, Ehrhard I et al (2017) Non-viral sexually transmitted infections—Epidemiology, clinical manifestations, diagnostics and therapy: Part 1: Gonococci. Hautarzt 68:43–49. https://doi.org/10.1007/s00105-016-3905-0

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    BMG (2016) BIS 2030 – Strategie zur Eindämmung von HIV, Hepatitis B und C und anderen sexuell übertragbaren Infektionen. https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/5_Publikationen/Praevention/Broschueren/Strategie_BIS_2030_HIV_HEP_STI.pdf. Zugegriffen: 14. Apr. 2020

  6. 6.

    Gesetz über Medizinprodukte. http://www.gesetze-im-internet.de/mpg/index.html. Zugegriffen: 15. April 2020

  7. 7.

    IVD-Verordnung 2017/746: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32017R0746&from=DE. Zugegriffen: 15. April 2020

  8. 8.

    Zentralstelle der Länder für Gesundheitsschutz bei Arzneimitteln und Medizinprodukten (2020) Benannte Stellen nach Verordnung (EU) 2017/746 (IVDR). https://www.zlg.de/medizinprodukte/dokumente/stellenlaboratorien/benannte-stellen-eu-2017746-ivdr/. Zugegriffen: 19. Juni 2020

  9. 9.

    Nando (New Approach Notified and Designated Organisations) Information System Nando (new approach notified and designated organisations) information system. https://ec.europa.eu/growth/tools-databases/nando/index.cfm. Zugegriffen: 19. Juni 2020

  10. 10.

    Zentralstelle der Länder für Gesundheitsschutz bei Arzneimitteln und Medizinprodukten (2020) Benannte Stellen nach Verordnung (EU) 2017/745 (MDR). https://www.zlg.de/medizinprodukte/dokumente/stellenlaboratorien/benannte-stellen-eu-2017745-mdr/. Zugegriffen: 19. Juni 2020

  11. 11.

    Medizinprodukte-Anpassungsgesetz-EU – MPAnpG-EU https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/3_Downloads/Gesetze_und_Verordnungen/GuV/M/MPAnpG-EU_RefE.pdf#page=1&zoom=auto,-82,496. Zugegriffen: 19. Juni 2020

  12. 12.

    https://apps.who.int/iris/bitstream/handle/10665/329915/WHO-CDS-HIV-19.30-eng.pdf?sequence=1&isAllowed=y. Zugegriffen: 19. Juni 2020

  13. 13.

    Rabenau HF, Bannert N, Berger A et al (2015) Nachweis einer Infektion mit Humanem Immundefizienzvirus (HIV): Serologisches Screening mit nachfolgender Bestätigungsdiagnostik durch Antikörper-basierte Testsysteme und/oder durch HIV-Nukleinsäure-Nachweis. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 58:877–886. https://doi.org/10.1007/s00103-015-2174-x

    Article  Google Scholar 

  14. 14.

    Robert-Koch-Institut (RKI) (2019) HIV/AIDS in Deutschland – Eckdaten der Schätzung. https://www.rki.de/DE/Content/InfAZ/H/HIVAIDS/Eckdaten/EckdatenDeutschland.pdf?__blob=publicationFile. Zugegriffen: 15. Apr. 2020

  15. 15.

    Robert-Koch-Institut (RKI) (2017) Schätzung der Zahl der HIV-Neuinfektionen und der Gesamtzahl der Menschen mit HIV in Deutschland. Epidemiol Bull 47:531–545

    Google Scholar 

  16. 16.

    Wratil PR, Rabenau HF, Eberle J et al (2020) Comparative multi-assay evaluation of Determine™ HIV-1/2 Ag/Ab Combo rapid diagnostic tests in acute and chronic HIV infection. Med Microbiol Immunol 209:139–150. https://doi.org/10.1007/s00430-019-00655-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Donnell D, Ramos E, Celum C et al (2017) The effect of oral preexposure prophylaxis on the progression of HIV‑1 seroconversion. AIDS 31:2007–2016. https://doi.org/10.1097/QAD.0000000000001577

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Stefic K, Novelli S, Mahjoub N et al (2018) Nonreactive human Immunodeficiency virus type 1 rapid tests after sustained viral suppression following antiretroviral therapy initiation during primary infection. J Infect Dis 217:1793–1797. https://doi.org/10.1093/infdis/jiy120

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Figueroa C, Johnson C, Verster A, Baggaley R (2015) Attitudes and acceptability on HIV self-testing among key populations: a literature review. AIDS Behav 19:1949–1965. https://doi.org/10.1007/s10461-015-1097-8

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Jamil MS, Prestage G, Fairley CK et al (2017) Effect of availability of HIV self-testing on HIV testing frequency in gay and bisexual men at high risk of infection (FORTH): a waiting-list randomised controlled trial. Lancet Hiv 4:e241–e250. https://doi.org/10.1016/S2352-3018(17)30023-1

    Article  PubMed  Google Scholar 

  21. 21.

    Paul-Ehrlich-Institut (2020) HIV-Selbsttests. https://www.pei.de/DE/newsroom/hiv-selbsttests/hiv-selbsttests-inhalt.html. Zugegriffen: 15. Apr. 2020

  22. 22.

    Steehler K, Siegler AJ (2019) Bringing HIV self-testing to scale in the United States: a review of challenges, potential solutions, and future opportunities. J Clin Microbiol 57:e257. https://doi.org/10.1128/JCM.00257-19

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Figueroa C, Johnson C, Ford N et al (2018) Reliability of HIV rapid diagnostic tests for self-testing compared with testing by health-care workers: a systematic review and meta-analysis. Lancet HIV 5:e277–e290. https://doi.org/10.1016/S2352-3018(18)30044-4

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Rosenberg NE, Kamanga G, Phiri S et al (2012) Detection of acute HIV infection: a field evaluation of the determine® HIV-1/2 Ag/Ab combo test. J Infect Dis 205:528–534. https://doi.org/10.1093/infdis/jir789

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Livant E, Heaps A, Kelly C et al (2017) The fourth generation AlereTM HIV Combo rapid test improves detection of acute infection in MTN-003 (VOICE) samples. J Clin Virol 94:15–21. https://doi.org/10.1016/j.jcv.2017.06.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    WHO (2019) hepatitis B fact sheet. https://www.who.int/news-room/fact-sheets/detail/hepatitis-b. Zugegriffen: 15. Apr. 2020

  27. 27.

    WHO (2016) Global health sector strategy on viral hepatitis 2016–2021. https://apps.who.int/iris/bitstream/handle/10665/246177/WHO-HIV-2016.06-eng.pdf;jsessionid=1CA658EA0E48462FD08849988D926F91?sequence=1. Zugegriffen: 15. Apr. 2020

  28. 28.

    WHO guidelines on hepatitis B and C testing. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO. http://www.who.int/hepatitis/publications/guidelines-hepatitis-c-btesting/en/. Zugegriffen: 15. April 2020

  29. 29.

    Meyer T, Schüttler CG, Straube E et al (2017) Schnelltest-Diagnostik sexuell übertragbarer Infektionen in niedrigschwelligen Einrichtungen : Gemeinsame Stellungnahme des RKI, PEI und der DSTIG. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 60:245–254. https://doi.org/10.1007/s00103-016-2496-3

    Article  PubMed  Google Scholar 

  30. 30.

    Chisenga CC, Musukuma K, Chilengi R et al (2018) Field performance of the Determine HBsAg point-of-care test for diagnosis of hepatitis B virus co-infection among HIV patients in Zambia. J Clin Virol 98:5–7. https://doi.org/10.1016/j.jcv.2017.11.005

    Article  PubMed  Google Scholar 

  31. 31.

    Njai HF, Shimakawa Y, Sanneh B et al (2015) Validation of rapid point-of-care (POC) tests for detection of hepatitis B surface antigen in field and laboratory settings in the Gambia, Western Africa. J Clin Microbiol 53:1156–1163. https://doi.org/10.1128/JCM.02980-14

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Barbosa JR, Colares JKB, Flores GL et al (2017) Performance of rapid diagnostic tests for detection of Hepatitis B and C markers in HIV infected patients. J Virol Methods 248:244–249. https://doi.org/10.1016/j.jviromet.2017.08.001

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Barbosa JR, Cortes VF, Portilho MM et al (2018) Performance of point of care assays for hepatitis B and C viruses in chronic kidney disease patients. J Clin Pathol 71:879–884. https://doi.org/10.1136/jclinpath-2018-205024

    Article  PubMed  Google Scholar 

  34. 34.

    Eko Mba JM, Bisseye C, Mombo LE et al (2019) Assessment of rapid diagnostic tests and fourth-generation Enzyme-Linked Immunosorbent Assays in the screening of Human Immunodeficiency and Hepatitis B virus infections among first-time blood donors in Libreville (Gabon). J Clin Lab Anal 33:e22824. https://doi.org/10.1002/jcla.22824

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Amini A, Varsaneux O, Kelly H et al (2017) Diagnostic accuracy of tests to detect hepatitis B surface antigen: a systematic review of the literature and meta-analysis. BMC Infect Dis 17:698. https://doi.org/10.1186/s12879-017-2772-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    WHO (2019) Performance evaluation acceptance criteria for HBsAg in vitro diagnostics in the context of WHO prequalification. https://www.who.int/diagnostics_laboratory/evaluations/hepb/161125_who_performance_criteria_hbsag_ivd.pdf?ua=1.%20Accessed%2029%20January%202019;. Zugegriffen: 15. Apr. 2020

  37. 37.

    Public reports of WHO prequalified IVDs for HBsAG https://www.who.int/diagnostics_laboratory/evaluations/pq-list/hbsag/public_report/en/. Zugegriffen: 15. April 2020

  38. 38.

    Scheiblauer H, El-Nageh M, Diaz S et al (2010) Performance evaluation of 70 hepatitis B virus (HBV) surface antigen (HBsAg) assays from around the world by a geographically diverse panel with an array of HBV genotypes and HBsAg subtypes. Vox Sang 98:403–414. https://doi.org/10.1111/j.1423-0410.2009.01272.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Ryu JH, Kwon M, Moon JD et al (2018) Development of a rapid automated fluorescent lateral flow immunoassay to detect hepatitis B surface antigen (HBsAg), antibody to HBsAg, and antibody to hepatitis C. Ann Lab Med 38:578–584. https://doi.org/10.3343/alm.2018.38.6.578

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    European Association for the Study of the Liver (2018) EASL Recommendations on Treatment of Hepatitis C 2018. J Hepatol 69:461–511. https://doi.org/10.1016/j.jhep.2018.03.026

    Article  Google Scholar 

  41. 41.

    Colin C, Lanoir D, Touzet S, Meyaud-Kraemer L, Bailly F, Trepo C, HEPATITIS Group (2001) Sensitivity and specificity of third-generation hepatitis C virus antibody detection assays: an analysis of the literature. J Viral Hepat 8:87–95. https://doi.org/10.1046/j.1365-2893.2001.00280.x

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Ross RS, Viazov S, Salloum S et al (2010) Analytical performance characteristics and clinical utility of a novel assay for total hepatitis C virus core antigen quantification. J Clin Microbiol 48:1161–1168. https://doi.org/10.1128/JCM.01640-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Busch MP (2001) Insights into the epidemiology, natural history and pathogenesis of hepatitis C virus infection from studies of infected donors and blood product recipients. Transfus Clin Biol 8:200–206. https://doi.org/10.1016/s1246-7820(01)00125-2

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Sarrazin C, Zimmermann T, Berg T et al (2018) Prophylaxis, diagnosis and therapy of hepatitis-C-virus (HCV) infection: the German guidelines on the management of HCV infection—AWMF-Register-No.: 021/012. Z Gastroenterol 56:756–838. https://doi.org/10.1055/a-0599-1320

    Article  PubMed  Google Scholar 

  45. 45.

    Pawlotsky JM (2002) Use and interpretation of virological tests for hepatitis C. Hepatology 36(Suppl 1):S65–S73. https://doi.org/10.1053/jhep.2002.36815

    Article  PubMed  Google Scholar 

  46. 46.

    Centers for Disease Control and Prevention (CDC) (2013) Testing for HCV infection: an update of guidance for clinicians and laboratorians. MMWR Morb Mortal Wkly Rep 62:362–365

    Google Scholar 

  47. 47.

    Khuroo MS, Khuroo NS, Khuroo MS (2015) Diagnostic accuracy of point-of-care tests for hepatitis C virus infection: a systematic review and meta-analysis. Plos One 10:e121450. https://doi.org/10.1371/journal.pone.0121450

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Mane A, Sacks J, Sharma S et al (2019) Evaluation of five rapid diagnostic tests for detection of antibodies to hepatitis C virus (HCV): A step towards scale-up of HCV screening efforts in India. Plos One 14(2019):e210556. https://doi.org/10.1371/journal.pone.0210556

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Chevaliez S, Poiteau L, Rosa I et al (2016) Prospective assessment of rapid diagnostic tests for the detection of antibodies to hepatitis C virus, a tool for improving access to care. Clin Microbiol Infect 22:459.e1–459.e6. https://doi.org/10.1016/j.cmi.2016.01.009

    CAS  Article  Google Scholar 

  50. 50.

    Kosack CS, Nick S (2016) Evaluation of two rapid screening assays for detecting hepatitis C antibodies in resource-constrained settings. Trop Med Int Health 21:603–609. https://doi.org/10.1111/tmi.12688

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Fisher DG, Hess KL, Erlyana E, Reynolds GL, Cummins CA, Alonzo TA (2015) Comparison of rapid point-of-care tests for detection of antibodies to hepatitis C virus. Open Forum Infect Dis 2:ofv101. https://doi.org/10.1093/ofid/ofv101

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Waheed U, Abdella YE, Saba NE et al (2019) Evaluation of screening effectiveness of hepatitis B surface antigen and anti-HCV rapid test kits in Pakistan. J Lab Physicians 11:369–372. https://doi.org/10.4103/JLP.JLP_172_19

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Poiteau L, Soulier A, Lemoine M et al (2018) Performance of a new rapid diagnostic test for the detection of antibodies to hepatitis C virus. J Virol Methods 261:153–155. https://doi.org/10.1016/j.jviromet.2018.08.019

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Waheed Y, Najmi MH, Aziz H, Waheed H, Imran M, Safi SZ (2017) Prevalence of hepatitis C in people who inject drugs in the cities of Rawalpindi and Islamabad. Pak Biomed Rep 7:263–266. https://doi.org/10.3892/br.2017.959

    CAS  Article  Google Scholar 

  55. 55.

    Kweon OJ, Lim YK, Kim HR, Kim TH, Lee MK (2019) Analytical performance of newly developed rapid point-of-care test for the simultaneous detection of hepatitis A, B, and C viruses in serum samples. J Med Virol 91:1056–1062. https://doi.org/10.1002/jmv.25405

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Tang W, Chen W, Amini A et al (2017) Diagnostic accuracy of tests to detect Hepatitis C antibody: a meta-analysis and review of the literature. BMC Infect Dis 17(Suppl 1):695. https://doi.org/10.1186/s12879-017-2773-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Smith BD, Drobeniuc J, Jewett A et al (2011) Evaluation of three rapid screening assays for detection of antibodies to hepatitis C virus. J Infect Dis 204:825–831. https://doi.org/10.1093/infdis/jir422

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Larrat S, Bourdon C, Baccard M et al (2012) Performance of an antigen-antibody combined assay for hepatitis C virus testing without venipuncture. J Clin Virol 55:220–225. https://doi.org/10.1016/j.jcv.2012.07.016

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    WHO (2019) Technical Specifications Series for submission to WHO Prequalification—Diagnostic Assessment: Rapid diagnostic tests to detect hepatitis C antibody or antigen. World Health Organization, Geneva (Licence: CC BY-NC-SA 3.0 IGO. https://apps.who.int/iris/bitstream/handle/10665/327936/9789241516518-eng.pdf. Zugegriffen: 15. April 2020

    Google Scholar 

  60. 60.

    Public reports of WHO prequalified IVDs for HCV https://www.who.int/diagnostics_laboratory/evaluations/pq-list/hcv/public_report/en/. Zugegriffen: 15. April 2020

  61. 61.

    Pallarés C, Carvalho-Gomes Â, Hontangas V et al (2018) Performance of the OraQuick Hepatitis C virus antibody test in oral fluid and fingerstick blood before and after treatment-induced viral clearance. J Clin Virol 102:77–83. https://doi.org/10.1016/j.jcv.2018.02.016

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    McHugh MP, Wu AHB, Chevaliez S, Pawlotsky JM, Hallin M, Templeton KE (2017) Multicenter evaluation of the Cepheid Xpert hepatitis C virus viral load assay. J Clin Microbiol 55:1550–1556. https://doi.org/10.1128/JCM.02460-16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Gupta E, Agarwala P, Kumar G, Maiwall R, Sarin SK (2017) Point-of-care testing (POCT) in molecular diagnostics: Performance evaluation of GeneXpert HCV RNA test in diagnosing and monitoring of HCV infection. J Clin Virol 88:46–51. https://doi.org/10.1016/j.jcv.2017.01.006

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Grebely J, Lamoury FMJ, Hajarizadeh B et al (2017) Evaluation of the Xpert HCV Viral Load point-of-care assay from venepuncture-collected and finger-stick capillary whole-blood samples: a cohort study. Lancet Gastroenterol Hepatol 2:514–520. https://doi.org/10.1016/S2468-1253(17)30075-4

    Article  PubMed  Google Scholar 

  65. 65.

    Lamoury FMJ, Bajis S, Hajarizadeh B et al (2018) Evaluation of the Xpert HCV viral load finger-stick point-of-care assay. J Infect Dis 217:1889–1896. https://doi.org/10.1093/infdis/jiy114

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Ivanova Reipold E, Easterbrook P, Trianni A et al (2017) Optimising diagnosis of viraemic hepatitis C infection: the development of a target product profile. BMC Infect Dis 17(Suppl 1):707. https://doi.org/10.1186/s12879-017-2770-5

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Lemoine M, Tillmann H (2018) What is required from HCV point-of care tests to reduce the burden of hepatitis C infection? ’Development and clinical validation of the genedrive point-of-care test for qualitative detection of hepatitis C virus. Gut 67:1916–1917. https://doi.org/10.1136/gutjnl-2018-316438

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Llibre A, Shimakawa Y, Mottez E et al (2018) Development and clinical validation of the genedrive point-of-care test for qualitative detection of hepatitis C virus. Gut 67:2017–2024. https://doi.org/10.1136/gutjnl-2017-315783

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    AWMF (2014) Diagnostik und Therapie der Syphilis. www.awmf.org/uploads/tx_szleitlinien/059002l_S2k_Diagnostik_Therapie_Syphilis_2014_07.pdf. Zugegriffen: 15. Apr. 2020

  70. 70.

    Toskin I, Murtagh M, Peeling RW, Blondeel K, Cordero J, Kiarie J (2017) Advancing prevention of sexually transmitted infections through point-of-care testing: target product profiles and landscape analysis. Sex Transm Infect 93:S69–S80. https://doi.org/10.1136/sextrans-2016-053071

    Article  PubMed  Google Scholar 

  71. 71.

    Point-Of-Care Tests—Target Product Profiles and Research Questions. https://www.who.int/reproductivehealth/POTC-TPPs-2016.pdf?ua=1. Zugegriffen: 15. April 2020

  72. 72.

    Jafari Y, Peeling RW, Shivkumar S et al (2013) Are Treponema pallidum specific rapid and point-ofcare tests for syphilis accurate enough for screening in resource limited settings? Evidence from a meta-analysis. Plos One 8:e54695. https://doi.org/10.1371/journal.pone.0054695

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Murtagh MM (2019) The point-of-care diagnostic landscape for sexually transmitted infections (STis). WHO 2019. https://www.who.int/reproductivehealth/topics/rtis/Diagnostic-Landscape-for-STIs-2019.pdf. Zugegriffen: 15. Apr. 2020

  74. 74.

    Causer LM, Kaldor JM, Fairley CK et al (2014) A laboratory-based evaluation of four rapid pointof-care tests for syphilis. Plos One 9:e91504. https://doi.org/10.1371/journal.pone.0091504

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Nakku-Joloba E, Kiragga A, Mbazira JK et al (2016) Clinical evaluation of 2 point-of-care lateral flow tests for the diagnosis of syphilis. Sex Transm Dis 43:623–625. https://doi.org/10.1097/OLQ.0000000000000498

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Pereira LE, McCormick J, Dorji T et al (2018) Laboratory evaluation of a commercially available rapid syphilis test. J Clin Microbiol 56:e832. https://doi.org/10.1128/JCM.00832-18

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Causer LM, Kaldor JM, Conway DP et al (2015) An evaluation of a novel dual treponemal/nontreponemal point-of-care test for syphilis as a tool to distinguish active from past treated infection. Clin Infect Dis 61:184–191. https://doi.org/10.1093/cid/civ243

    Article  PubMed  Google Scholar 

  78. 78.

    Humphries RM, Woo JS, Chung JH, Sokovic A, Bristow CC, Klausner JD (2014) Laboratory evaluation of three rapid diagnostic tests for dual detection of HIV and treponema pallidum antibodies. J Clin Microbiol 52:4394–4397. https://doi.org/10.1128/JCM.02468-14

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Yin YP, Ngige E, Anyaike C et al (2015) Laboratory evaluation of three dual rapid diagnostic tests for HIV and syphilis in China and Nigeria. Int J Gynaecol Obstet 130(Suppl 1):S22–S26. https://doi.org/10.1016/j.ijgo.2015.04.004

    Article  PubMed  Google Scholar 

  80. 80.

    Van den Heuvel A, Smet H, Prat I et al (2019) Laboratory evaluation of four HIV/syphilis rapid diagnostic tests. BMC Infect Dis 19:1. https://doi.org/10.1186/s12879-0183567-x

    Article  Google Scholar 

  81. 81.

    Herbst de Cortina S, Bristow CC, Vargas SK et al (2016) Laboratory evaluation of a point-of-care downward-flow assay for simultaneous detection of antibodies to treponema pallidum and human Immunodeficiency virus. J Clin Microbiol 54:1922–1924. https://doi.org/10.1128/JCM.00637-16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Gliddon HD, Peeling RW, Kamb ML, Toskin I, Wi TE, Taylor MM (2017) A systematic review and meta-analysis of studies evaluating the performance and operational characteristics of dual point-of-care tests for HIV and syphilis. Sex Transm Infect 93(S4):S3–S15. https://doi.org/10.1136/sextrans-2016-053069

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Kelly H, Coltart CEM, Pant Pai N et al (2017) Systematic reviews of point-of-care tests for the diagnosis of urogenital Chlamydia trachomatis infections. Sex Transm Infect 93(S4):S22–S30. https://doi.org/10.1136/sextrans-2016-053067

    Article  PubMed  Google Scholar 

  84. 84.

    Guy RJ, Causer LM, Klausner JD et al (2017) Performance and operational characteristics of point-of-care tests for the diagnosis of urogenital gonococcal infections. Sex Transm Infect 93:S16–S21. https://doi.org/10.1136/sextrans-2017-053192

    Article  PubMed  Google Scholar 

  85. 85.

    Abbai NS, Moodley P, Reddy T et al (2015) Clinical evaluation of the onestep gonorrhea rapicard Instatest for detection of Neisseria gonorrhoeae in symptomatic patients from KwaZulu-natal, south africa. J Clin Microbiol 53:1348–1350. https://doi.org/10.1128/JCM.03603-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Ham JY, Jung J, Hwang BG et al (2015) Highly sensitive and novel point-of-care system, aQcare Chlamydia TRF kit for detecting Chlamydia trachomatis by using europium (Eu) (III) chelated nanoparticles. Ann Lab Med 35:50–56. https://doi.org/10.3343/alm.2015.35.1.50

    Article  PubMed  Google Scholar 

  87. 87.

    Juntunen E, Myyryläinen T, Salminen T, Soukka T, Pettersson K (2012) Performance of fluorescent europium (III) nanoparticles and colloidal gold reporters in lateral flow bioaffinity assay. Anal Biochem 428:31–38. https://doi.org/10.1016/j.ab.2012.06.005

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Suzuki K, Matsumoto T, Murakami H et al (2004) Evaluation of a rapid antigen detection test for Neisseria gonorrhoeae in urine sediment for diagnosis of gonococcal urethritis in males. J Infect Chemother 10:208–211. https://doi.org/10.1007/s10156-004-0322-6

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Samarawickrama A, Cheserem E, Graver M et al (2014) Pilot study of use of the BioStar Optical ImmunoAssay GC point-of-care test for diagnosing gonorrhoea in men attending a genitourinary medicine clinic. J Med Microbiol 63:1111–1112. https://doi.org/10.1099/jmm.0.071852-0

    Article  PubMed  Google Scholar 

  90. 90.

    Gaydos CA, van der Pol B, Jett-Goheen M et al (2013) Performance of the Cepheid CT/NG Xpert Rapid PCR Test for Detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J Clin Microbiol 51:1666–1672. https://doi.org/10.1128/JCM.03461-12

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Garrett N, Mitchev N, Osman F et al (2019) Diagnostic accuracy of the Xpert CT/NG and OSOM Trichomonas Rapid assays for point-of-care STI testing among young women in South Africa: a cross-sectional study. BMJ Open 9:e26888. https://doi.org/10.1136/bmjopen-2018-026888

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Peeling RW, Holmes KK, Mabey D, Ronald A (2006) Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Infect 82(Suppl 5):v1–v6. https://doi.org/10.1136/sti.2006.024265

    Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Goldenberg SD, Finn J, Sedudzi E et al (2012) Performance of the GeneXpert CT/NG assay compared to that of the Aptima AC2 assay for detection of rectal Chlamydia trachomatis and Neisseria gonorrhoeae by use of residual aptima samples. J Clin Microbiol 50:3867–3869. https://doi.org/10.1128/JCM.01930-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Geiger R, Smith DM, Little SJ, Mehta SR (2016) Validation of the GeneXpert(R) CT/NG Assay for use with Male Pharyngeal and Rectal Swabs. Austin J HIV AIDS Res 3:1021

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Bristow CC, McGrath MR, Cohen AC, Anderson LJ, Gordon KK, Klausner JD (2017) Comparative evaluation of 2 nucleic acid amplification tests for the detection of Chlamydia trachomatis and Neisseria gonorrhoeae at extragenital sites. Sex Transm Dis 44:398–400. https://doi.org/10.1097/OLQ.0000000000000627

    Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Dize L, Silver B, Gaydos C (2018) Comparison of the Cepheid GeneXpert CT/NG assay to the Hologic Aptima Combo2 assay for the detection of Chlamydia trachomatis and Neisseria gonorrhoeae in self-collected rectal swabs. Diagn Microbiol Infect Dis 90:83–84. https://doi.org/10.1016/j.diagmicrobio.2017.10.013

    Article  PubMed  Google Scholar 

  97. 97.

    Footman A, Dionne-Odom J, Aaron KJ, Raper JL, Van Der Pol B (2020) Performance of 4 molecular assays for detection of Chlamydia and gonorrhea in a sample of human immunodeficiency virus-positive men who have sex with men. Sex Transm Dis 47:158–161. https://doi.org/10.1097/OLQ.0000000000001115

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Jacobsson S, Boiko I, Golparian D et al (2018) WHO laboratory validation of Xpert® CT/NG and Xpert® TV on the GeneXpert system verifies high performances. APMIS 126:907–912. https://doi.org/10.1111/apm.12902

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Widdice LE, Hsieh YH, Silver B, Barnes M, Barnes P, Gaydos CA (2018) Performance of the Atlas genetics rapid test for Chlamydia trachomatis and women’s attitudes toward point-of-care testing. Sex Transm Dis 45:723–727. https://doi.org/10.1097/OLQ.0000000000000865

    Article  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Binx health (2020) https://mybinxhealth.com/news/binx-health-receives-fda-510k-clearance-for-rapid-point-of-care-platform-for-womens-health/. Zugegriffen: 15. Apr. 2020

  101. 101.

    Brook G (2015) The performance of non-NAAT point-of-care (POC) tests and rapid NAAT tests for chlamydia and gonorrhoea infections. An assessment of currently available assays. Sex Transm Infect 91:539–544. https://doi.org/10.1136/sextrans-2014-051997

    Article  PubMed  Google Scholar 

  102. 102.

    Unemo M, Seifert HS, Hook EW 3rd et al (2019) Gonorrhoea. Nat Rev Dis Primers 5:79. https://doi.org/10.1038/s41572-019-0128-6

    Article  PubMed  Google Scholar 

  103. 103.

    Donà V, Low N, Golparian D, Unemo M (2017) Recent advances in the development and use of molecular tests to predict antimicrobial resistance in Neisseria gonorrhoeae. Expert Rev Mol Diagn 17:845–859. https://doi.org/10.1080/14737159.2017.1360137

    CAS  Article  PubMed  Google Scholar 

  104. 104.

    Status of active applications to the prequalification of in vitro diagnostics. https://www.who.int/diagnostics_laboratory/pq_status/en/. Zugegriffen: 15. April 2020

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to PD Dr. rer. nat. Thomas Meyer.

Ethics declarations

Interessenkonflikt

T. Meyer war als Berater für die Firma Roche tätig und erhielt ein Beraterhonorar sowie als Referent für die Firma Cepheid und erhielt ein Vortragshonorar. J. Eberle, R. S. Roß, C.G. Schüttler, M. Baier, S. Buder, P.K. Kohl, D. Münstermann, H.-J. Hagedorn, S. Nick, K. Jansen, V. Bremer, M. Mau und N.H. Brockmeyer geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Herr Mau arbeitet selbstständig als freier Journalist und ist keiner Institution zugehörig.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meyer, T., Eberle, J., Roß, R.S. et al. Schnelltestdiagnostik sexuell übertragbarer Infektionen. Bundesgesundheitsbl (2020). https://doi.org/10.1007/s00103-020-03218-4

Download citation

Schlüsselwörter

  • HIV-Selbsttest
  • Point of Care
  • Antigentest
  • Lateral Flow Assay
  • Nukleinsäureamplifikationstest

Keywords

  • HIV self-testing
  • Point of care
  • Antigen test
  • Lateral flow assay
  • Nucleic acid amplification test