Wissenschaftliche Erläuterungen zur Stellungnahme Transfusionsassoziierte Immunmodulation (TRIM) des Arbeitskreises Blut vom 13. Februar 2020

Bei der 88. Sitzung des Arbeitskreises Blut am 13. Februar 2020 wurde folgende Ergänzung zu Stellungnahme (S 22) verabschiedet

    Literatur

    1. 1.

      Bernard AC, Davenport DL, Chang PK, Vaughan TB, Zwischenberger JB (2009) Intraoperative transfusion of 1 U to 2 U packed red blood cells is associated with increased 30-day mortality, surgical-site infection, pneumonia, and sepsis in general surgery patients. J Am Coll Surg 208:931–937

    2. 2.

      Glance LG, Dick AW, Mukamel DB, Fleming FJ, Zollo RA, Wissler R, Salloum R, Meredith UW, Osler TM (2011) Association between intraoperative blood transfusion and mortality and morbidity in patients undergoing noncardiac surgery. Anesthesiology 114:283–292

      PubMed  Google Scholar 

    3. 3.

      Remy KE, Hall MW, Cholette J, Juffermans NP, Nicol K, Doctor A, Blumberg N, Spinella PC, Norris PJ, Dahmer MK, Muszynski JA (2018) Mechanisms of red blood cell transfusion-related immunomodulation. Transfusion 58:804–815

      PubMed  PubMed Central  Google Scholar 

    4. 4.

      Youssef LA, Spitalnik SL (2017) Transfusion-related immunomodulation: a reappraisal. Curr Opin Hematol 24:551–557

      CAS  PubMed  PubMed Central  Google Scholar 

    5. 5.

      Baumgartner JM, Nydam TL, Clarke JH, Banerjee A, Silliman CC, McCarter MD (2009) Red blood cell supernatant potentiates LPS-induced proinflammatory cytokine response from peripheral blood mononuclear cells. J Interferon Cytokine Res 29:333–338

      CAS  PubMed  PubMed Central  Google Scholar 

    6. 6.

      Hart S, Cserti-Gazdewich CM, McCluskey SA (2015) Red cell transfusion and the immune system. Anaesthesia 70(Suppl 1: 38–45):e13–36

      Google Scholar 

    7. 7.

      Sparrow RL (2010) Red blood cell storage and transfusion-related immunomodulation. Blood Transfus 8(Suppl 3):s26–30

      PubMed  PubMed Central  Google Scholar 

    8. 8.

      Baumgartner JM, Silliman CC, Moore EE, Banerjee A, McCarter MD (2009) Stored red blood cell transfusion induces regulatory T cells. J Am Coll Surg 208:110–119

      PubMed  Google Scholar 

    9. 9.

      Anniss AM, Sparrow RL (2006) Storage duration and white blood cell content of red blood cell (RBC) products increases adhesion of stored RBCs to endothelium under flow conditions. Transfusion 46:1561–1567

      CAS  PubMed  Google Scholar 

    10. 10.

      Sparrow RL, Healey G, Patton KA, Veale MF (2006) Red blood cell age determines the impact of storage and leukocyte burden on cell adhesion molecules, glycophorin A and the release of annexin V. Transfus Apher Sci 34:15–23

      PubMed  Google Scholar 

    11. 11.

      Muszynski JA, Spinella PC, Cholette JM, Acker JP, Hall MW, Juffermans NP, Kelly DP, Blumberg N, Nicol K, Liedel J, Doctor A, Remy KE, Tucci M, Lacroix J, Norris PJ (2017) Transfusion-related immunomodulation: review of the literature and implications for pediatric critical illness. Transfusion 57:195–206

      PubMed  Google Scholar 

    12. 12.

      Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, Guyatt GH, Harbour RT, Haugh MC, Henry D, Hill S, Jaeschke R, Leng G, Liberati A, Magrini N, Mason J, Middleton P, Mrukowicz J, O’Connell D, Oxman AD, Phillips B, Schunemann HJ, Edejer T, Varonen H, Vist GE, Williams JW Jr., Zaza S (2004) Grading quality of evidence and strength of recommendations. BMJ 328:1490

      PubMed  Google Scholar 

    13. 13.

      Stang A (2011) Randomized controlled trials—an indispensible part of clinical research. Dtsch Arztebl Int 108:661–662

      PubMed  PubMed Central  Google Scholar 

    14. 14.

      Hrobjartsson A, Emanuelsson F, Skou Thomsen AS, Hilden J, Brorson S (2014) Bias due to lack of patient blinding in clinical trials. A systematic review of trials randomizing patients to blind and nonblind sub-studies. Int J Epidemiol 43:1272–1283

      PubMed  PubMed Central  Google Scholar 

    15. 15.

      Hrobjartsson A, Thomsen AS, Emanuelsson F, Tendal B, Hilden J, Boutron I, Ravaud P, Brorson S (2012) Observer bias in randomised clinical trials with binary outcomes: systematic review of trials with both blinded and non-blinded outcome assessors. BMJ 344:e1119

      PubMed  Google Scholar 

    16. 16.

      Sedgwick P (2015) Intention to treat analysis versus per protocol analysis of trial data. BMJ 350:h681

      PubMed  Google Scholar 

    17. 17.

      Schulz KF, Grimes DA (2005) Multiplicity in randomised trials I: endpoints and treatments. Lancet 365:1591–1595

      PubMed  Google Scholar 

    18. 18.

      Schulz KF, Grimes DA (2005) Multiplicity in randomised trials II: subgroup and interim analyses. Lancet 365:1657–1661

      PubMed  Google Scholar 

    19. 19.

      Assmann SF, Pocock SJ, Enos LE, Kasten LE (2000) Subgroup analysis and other (mis)uses of baseline data in clinical trials. Lancet 355:1064–1069

      CAS  PubMed  Google Scholar 

    20. 20.

      ISIS-Colaboration Group (1988) Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Lancet 2:349–360

      Google Scholar 

    21. 21.

      Chan AW, Hrobjartsson A, Haahr MT, Gotzsche PC, Altman DG (2004) Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. JAMA 291:2457–2465

      CAS  PubMed  Google Scholar 

    22. 22.

      Middelburg RA, van de Watering LM, van der Bom JG (2010) Blood transfusions: good or bad? Confounding by indication, an underestimated problem in clinical transfusion research. Transfusion 50:1181–1183

      PubMed  Google Scholar 

    23. 23.

      Concato J, Shah N, Horwitz RI (2000) Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med 342:1887–1892

      CAS  PubMed  PubMed Central  Google Scholar 

    24. 24.

      Anglemyer A, Horvath HT, Bero L (2014) Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials. Cochrane Database Syst Rev .https://doi.org/10.1002/14651858.MR000034.pub2

    25. 25.

      Jick H, Garcia Rodriguez LA, Perez-Gutthann S (1998) Principles of epidemiological research on adverse and beneficial drug effects. Lancet 352:1767–1770

      CAS  PubMed  Google Scholar 

    26. 26.

      Feinstein AR (1995) Meta-analysis: statistical alchemy for the 21st century. J Clin Epidemiol 48:71–79

      CAS  PubMed  Google Scholar 

    27. 27.

      Stegenga J (2011) Is meta-analysis the platinum standard of evidence? Stud Hist Philos Biol Biomed Sci 42:497–507

      PubMed  Google Scholar 

    28. 28.

      Kjaergard LL, Villumsen J, Gluud C (2001) Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. Ann Intern Med 135:982–989

      CAS  PubMed  Google Scholar 

    29. 29.

      LeLorier J, Gregoire G, Benhaddad A, Lapierre J, Derderian F (1997) Discrepancies between meta-analyses and subsequent large randomized, controlled trials. N Engl J Med 337:536–542

      CAS  PubMed  Google Scholar 

    30. 30.

      Cochrane Collaboration: Cochrane Handbook for Systematic Reviews of Interventions: The Cochrane Collaboration and John Wiley & Sons Ltd; 2008.

    31. 31.

      Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700

      PubMed  PubMed Central  Google Scholar 

    32. 32.

      Greco T, Zangrillo A, Biondi-Zoccai G, Landoni G (2013) Meta-analysis: pitfalls and hints. Heart Lung Vessel 5:219–225

      CAS  PubMed  PubMed Central  Google Scholar 

    33. 33.

      Walker E, Hernandez AV, Kattan MW (2008) Meta-analysis: Its strengths and limitations. Cleve Clin J Med 75:431–439

      PubMed  Google Scholar 

    34. 34.

      Ioannidis JPA (2016) The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-analyses. Milbank Q 94:485–514

      PubMed  PubMed Central  Google Scholar 

    35. 35.

      Easterbrook PJ, Berlin JA, Gopalan R, Matthews DR (1991) Publication bias in clinical research. Lancet 337:867–872

      CAS  PubMed  Google Scholar 

    36. 36.

      Turner RM, Bird SM, Higgins JP (2013) The impact of study size on meta-analyses: examination of underpowered studies in Cochrane reviews. Plos One 8:e59202

      CAS  PubMed  PubMed Central  Google Scholar 

    37. 37.

      Sedgwick P (2015) Meta-analyses: what is heterogeneity? BMJ 350:h1435

      PubMed  Google Scholar 

    38. 38.

      Weed DL (2000) Interpreting epidemiological evidence: how meta-analysis and causal inference methods are related. Int J Epidemiol 29:387–390

      CAS  PubMed  Google Scholar 

    39. 39.

      Hill AB (1965) The environment and disease: Association or causation? Proc R Soc Med 58:295–300

      CAS  PubMed  PubMed Central  Google Scholar 

    40. 40.

      Sparrow RL (2017) Red blood cell components: time to revisit the sources of variability. Blood Transfus 15:116–125

      PubMed  PubMed Central  Google Scholar 

    41. 41.

      Musallam KM, Tamim HM, Richards T, Spahn DR, Rosendaal FR, Habbal A, Khreiss M, Dahdaleh FS, Khavandi K, Sfeir PM, Soweid A, Hoballah JJ, Taher AT, Jamali FR (2011) Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study. Lancet 378:1396–1407

      PubMed  Google Scholar 

    42. 42.

      Richards T, Musallam KM, Nassif J, Ghazeeri G, Seoud M, Gurusamy KS, Jamali FR (2015) Impact of Preoperative Anaemia and Blood Transfusion on Postoperative Outcomes in Gynaecological Surgery. Plos One 10:e130861

      PubMed  PubMed Central  Google Scholar 

    43. 43.

      Izaks GJ, Westendorp RG, Knook DL (1999) The definition of anemia in older persons. JAMA 281:1714–1717

      CAS  PubMed  Google Scholar 

    44. 44.

      Martinsson A, Andersson C, Andell P, Koul S, Engstrom G, Smith JG (2014) Anemia in the general population: prevalence, clinical correlates and prognostic impact. Eur J Epidemiol 29:489–498

      PubMed  Google Scholar 

    45. 45.

      Toft-Petersen AP, Torp-Pedersen C, Weinreich UM, Rasmussen BS (2016) Association between hemoglobin and prognosis in patients admitted to hospital for COPD. Int J Chron Obstruct Pulmon Dis 11:2813–2820

      CAS  PubMed  PubMed Central  Google Scholar 

    46. 46.

      Holst LB, Petersen MW, Haase N, Perner A, Wetterslev J (2015) Restrictive versus liberal transfusion strategy for red blood cell transfusion: systematic review of randomised trials with meta-analysis and trial sequential analysis. BMJ 350:h1354

      PubMed  PubMed Central  Google Scholar 

    47. 47.

      Gregersen M (2016) Postoperative red blood cell transfusion strategy in frail anemic elderly with hip fracture. A randomized controlled trial. Dan Med J 63:B5221

    48. 48.

      Gregersen M, Damsgaard EM, Borris LC (2015) Blood transfusion and risk of infection in frail elderly after hip fracture surgery: the TRIFE randomized controlled trial. Eur J Orthop Surg Traumatol 25:1031–1038

      PubMed  Google Scholar 

    49. 49.

      Vandenbroucke JP (2008) Observational research, randomised trials, and two views of medical science. PLoS Med 5:e67

      PubMed  PubMed Central  Google Scholar 

    50. 50.

      Kuss O, Blettner M, Borgermann J (2016) Propensity Score: an Alternative Method of Analyzing Treatment Effects. Dtsch Arztebl Int 113:597–603

      PubMed  PubMed Central  Google Scholar 

    51. 51.

      Ziemann M, Rink L, Frietsch T, Spannagl M (2017) Schuler: Immunmodulation durch Transfusion von Erythrozytenkonzentraten. Transfusionsmedizin 7:40–58

      Google Scholar 

    52. 52.

      Glance LG, Mukamel DB, Blumberg N, Fleming FJ, Hohmann SF, Dick AW (2014) Association between surgical resident involvement and blood use in noncardiac surgery. Transfusion 54:691–700

      PubMed  Google Scholar 

    53. 53.

      Petersen ML, van der Laan MJ (2014) Causal models and learning from data: integrating causal modeling and statistical estimation. Epidemiology 25:418–426

      PubMed  PubMed Central  Google Scholar 

    54. 54.

      Schisterman EF, Cole SR, Platt RW (2009) Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 20:488–495

      PubMed  PubMed Central  Google Scholar 

    55. 55.

      Holm C, Thomsen LL, Norgaard A, Langhoff-Roos J (2017) Single-dose intravenous iron infusion versus red blood cell transfusion for the treatment of severe postpartum anaemia: a randomized controlled pilot study. Vox Sang 112:122–131

      CAS  PubMed  Google Scholar 

    56. 56.

      Prick BW, Jansen AJ, Steegers EA, Hop WC, Essink-Bot ML, Uyl-de Groot CA, Akerboom BM, van Alphen M, Bloemenkamp KW, Boers KE, Bremer HA, Kwee A, van Loon AJ, Metz GC, Papatsonis DN, van der Post JA, Porath MM, Rijnders RJ, Roumen FJ, Scheepers HC, Schippers DH, Schuitemaker NW, Stigter RH, Woiski MD, Mol BW, van Rhenen DJ, Duvekot JJ (2014) Transfusion policy after severe postpartum haemorrhage: a randomised non-inferiority trial. Bjog 121:1005–1014

      CAS  PubMed  Google Scholar 

    57. 57.

      Carson JL, Terrin ML, Noveck H, Sanders DW, Chaitman BR, Rhoads GG, Nemo G, Dragert K, Beaupre L, Hildebrand K, Macaulay W, Lewis C, Cook DR, Dobbin G, Zakriya KJ, Apple FS, Horney RA, Magaziner J (2011) Liberal or restrictive transfusion in high-risk patients after hip surgery. N Engl J Med 365:2453–2462

      CAS  PubMed  PubMed Central  Google Scholar 

    58. 58.

      Carson JL, Sieber F, Cook DR, Hoover DR, Noveck H, Chaitman BR, Fleisher L, Beaupre L, Macaulay W, Rhoads GG, Paris B, Zagorin A, Sanders DW, Zakriya KJ, Magaziner J (2015) Liberal versus restrictive blood transfusion strategy: 3-year survival and cause of death results from the FOCUS randomised controlled trial. Lancet 385:1183–1189

      PubMed  Google Scholar 

    59. 59.

      Parker MJ (2013) Randomised trial of blood transfusion versus a restrictive transfusion policy after hip fracture surgery. Injury 44:1916–1918

      PubMed  Google Scholar 

    60. 60.

      Gregersen M, Borris LC, Damsgaard EM (2015) Blood transfusion and overall quality of life after hip fracture in frail elderly patients—the transfusion requirements in frail elderly randomized controlled trial. J Am Med Dir Assoc 16:762–766

      PubMed  Google Scholar 

    61. 61.

      Gregersen M, Borris LC, Damsgaard EM (2015) Postoperative blood transfusion strategy in frail, anemic elderly patients with hip fracture: the TRIFE randomized controlled trial. Acta Orthop 86:363–372

      PubMed  PubMed Central  Google Scholar 

    62. 62.

      Blandfort S, Gregersen M, Borris LC, Damsgaard EM (2017) Blood transfusion strategy and risk of postoperative delirium in nursing homes residents with hip fracture. A post hoc analysis based on the TRIFE randomized controlled trial. Aging Clin Exp Res 29:459–466

      PubMed  Google Scholar 

    63. 63.

      Grover M, Talwalkar S, Casbard A, Boralessa H, Contreras M, Boralessa H, Brett S, Goldhill DR, Soni N (2006) Silent myocardial ischaemia and haemoglobin concentration: a randomized controlled trial of transfusion strategy in lower limb arthroplasty. Vox Sang 90:105–112

      CAS  PubMed  Google Scholar 

    64. 64.

      Nielsen K, Johansson PI, Dahl B, Wagner M, Frausing B, Borglum J, Jensen K, Sturup J, Hvolris J, Rasmussen LS (2014) Perioperative transfusion threshold and ambulation after hip revision surgery—a randomized trial. BMC Anesthesiol 14:89

      PubMed  PubMed Central  Google Scholar 

    65. 65.

      Webert KE, Cook RJ, Couban S, Carruthers J, Lee KA, Blajchman MA, Lipton JH, Brandwein JM, Heddle NM (2008) A multicenter pilot-randomized controlled trial of the feasibility of an augmented red blood cell transfusion strategy for patients treated with induction chemotherapy for acute leukemia or stem cell transplantation. Transfusion 48:81–91

      CAS  PubMed  Google Scholar 

    66. 66.

      Robitaille N, Lacroix J, Alexandrov L, Clayton L, Cortier M, Schultz KR, Bittencourt H, Duval M (2013) Excess of veno-occlusive disease in a randomized clinical trial on a higher trigger for red blood cell transfusion after bone marrow transplantation: a canadian blood and marrow transplant group trial. Biol Blood Marrow Transplant 19:468–473

      PubMed  Google Scholar 

    67. 67.

      de Almeida JP, Vincent JL, Galas FR, de Almeida EP, Fukushima JT, Osawa EA, Bergamin F, Park CL, Nakamura RE, Fonseca SM, Cutait G, Alves JI, Bazan M, Vieira S, Sandrini AC, Palomba H, Ribeiro U Jr., Crippa A, Dalloglio M, Diz Mdel P, Kalil Filho R, Auler JO Jr., Rhodes A, Hajjar LA (2015) Transfusion requirements in surgical oncology patients: a prospective, randomized controlled trial. Anesthesiology 122:29–38

      PubMed  Google Scholar 

    68. 68.

      DeZern AE, Williams K, Zahurak M, Hand W, Stephens RS, King KE, Frank SM, Ness PM (2016) Red blood cell transfusion triggers in acute leukemia: a randomized pilot study. Transfusion 56:1750–1757

      CAS  PubMed  PubMed Central  Google Scholar 

    69. 69.

      Bergamin FS, Almeida JP, Landoni G, Galas F, Fukushima JT, Fominskiy E, Park CHL, Osawa EA, Diz MPE, Oliveira GQ, Franco RA, Nakamura RE, Almeida EM, Abdala E, Freire MP, Filho RK, Auler JOC Jr., Hajjar LA (2017) Liberal Versus Restrictive Transfusion Strategy in Critically Ill Oncologic Patients: The Transfusion Requirements in Critically Ill Oncologic Patients Randomized Controlled Trial. Crit Care Med 45:766–773

      PubMed  Google Scholar 

    70. 70.

      Yakymenko D, Frandsen KB, Christensen IJ, Norgaard A, Johansson PI, Daugaard G, Mau-Sorensen M (2018) Randomised feasibility study of a more liberal haemoglobin trigger for red blood cell transfusion compared to standard practice in anaemic cancer patients treated with chemotherapy. Transfus Med 28:208–215

      CAS  PubMed  Google Scholar 

    71. 71.

      Naidech AM, Shaibani A, Garg RK, Duran IM, Liebling SM, Bassin SL, Bendok BR, Bernstein RA, Batjer HH, Alberts MJ (2010) Prospective, randomized trial of higher goal hemoglobin after subarachnoid hemorrhage. Neurocrit Care 13:313–320

      PubMed  Google Scholar 

    72. 72.

      Robertson CS, Hannay HJ, Yamal JM, Gopinath S, Goodman JC, Tilley BC, Baldwin A, Rivera LL, Saucedo-Crespo H, Ahmed O, Sadasivan S, Ponce L, Cruz-Navarro J, Shahin H, Aisiku IP, Doshi P, Valadka A, Neipert L, Waguspack JM, Rubin ML, Benoit JS, Swank P (2014) Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial. JAMA 312:36–47

      PubMed  PubMed Central  Google Scholar 

    73. 73.

      Leal-Noval SR, Arellano-Orden V, Munoz-Gomez M, Cayuela A, Marin-Caballos A, Rincon-Ferrari MD, Garcia-Alfaro C, Amaya-Villar R, Casado-Mendez M, Dusseck R, Murillo-Cabezas F (2017) Red Blood Cell Transfusion Guided by Near Infrared Spectroscopy in Neurocritically Ill Patients with Moderate or Severe Anemia: A Randomized, Controlled Trial. J Neurotrauma 34:2553–2559

      PubMed  Google Scholar 

    74. 74.

      Villanueva C, Colomo A, Bosch A, Concepcion M, Hernandez-Gea V, Aracil C, Graupera I, Poca M, Alvarez-Urturi C, Gordillo J, Guarner-Argente C, Santalo M, Muniz E, Guarner C (2013) Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med 368:11–21

      CAS  PubMed  Google Scholar 

    75. 75.

      Jairath V, Kahan BC, Gray A, Dore CJ, Mora A, James MW, Stanley AJ, Everett SM, Bailey AA, Dallal H, Greenaway J, Le Jeune I, Darwent M, Church N, Reckless I, Hodge R, Dyer C, Meredith S, Llewelyn C, Palmer KR, Logan RF, Travis SP, Walsh TS, Murphy MF (2015) Restrictive versus liberal blood transfusion for acute upper gastrointestinal bleeding (TRIGGER): a pragmatic, open-label, cluster randomised feasibility trial. Lancet 386:137–144

      PubMed  Google Scholar 

    76. 76.

      Shehata N, Burns LA, Nathan H, Hebert P, Hare GM, Fergusson D, Mazer CD (2012) A randomized controlled pilot study of adherence to transfusion strategies in cardiac surgery. Transfusion 52:91–99

      PubMed  Google Scholar 

    77. 77.

      Murphy GJ, Pike K, Rogers CA, Wordsworth S, Stokes EA, Angelini GD, Reeves BC (2015) Liberal or restrictive transfusion after cardiac surgery. N Engl J Med 372:997–1008

      CAS  PubMed  Google Scholar 

    78. 78.

      Mazer CD, Whitlock RP, Fergusson DA, Hall J, Belley-Cote E, Connolly K, Khanykin B, Gregory AJ, de Medicis E, McGuinness S, Royse A, Carrier FM, Young PJ, Villar JC, Grocott HP, Seeberger MD, Fremes S, Lellouche F, Syed S, Byrne K, Bagshaw SM, Hwang NC, Mehta C, Painter TW, Royse C, Verma S, Hare GMT, Cohen A, Thorpe KE, Juni P, Shehata N (2017) Restrictive or Liberal Red-Cell Transfusion for Cardiac Surgery. N Engl J Med 377:2133–2144

      PubMed  Google Scholar 

    79. 79.

      Koch CG, Sessler DI, Mascha EJ, Sabik JF 3rd, Li L, Duncan AI, Zimmerman NM, Blackstone EH (2017) A Randomized Clinical Trial of Red Blood Cell Transfusion Triggers in Cardiac Surgery. Ann Thorac Surg 104:1243–1250

      PubMed  Google Scholar 

    80. 80.

      Carson JL, Stanworth SJ, Alexander JH, Roubinian N, Fergusson DA, Triulzi DJ, Goodman SG, Rao SV, Doree C, Hebert PC (2018) Clinical trials evaluating red blood cell transfusion thresholds: An updated systematic review and with additional focus on patients with cardiovascular disease. Am Heart J 200:96–101

      PubMed  Google Scholar 

    81. 81.

      Chen QH, Wang HL, Liu L, Shao J, Yu J, Zheng RQ (2018) Effects of restrictive red blood cell transfusion on the prognoses of adult patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials. Crit Care 22:142

      PubMed  PubMed Central  Google Scholar 

    82. 82.

      Laine A, Niemi T, Schramko A (2018) Transfusion Threshold of Hemoglobin 80 g/L Is Comparable to 100 g/L in Terms of Bleeding in Cardiac Surgery: A Prospective Randomized Study. J Cardiothorac Vasc Anesth 32:131–139

      PubMed  Google Scholar 

    83. 83.

      Cooper HA, Rao SV, Greenberg MD, Rumsey MP, McKenzie M, Alcorn KW, Panza JA (2011) Conservative versus liberal red cell transfusion in acute myocardial infarction (the CRIT Randomized Pilot Study). Am J Cardiol 108:1108–1111

      PubMed  Google Scholar 

    84. 84.

      Carson JL, Brooks MM, Abbott JD, Chaitman B, Kelsey SF, Triulzi DJ, Srinivas V, Menegus MA, Marroquin OC, Rao SV, Noveck H, Passano E, Hardison RM, Smitherman T, Vagaonescu T, Wimmer NJ, Williams DO (2013) Liberal versus restrictive transfusion thresholds for patients with symptomatic coronary artery disease. Am Heart J 165(61):964–971.e9

      PubMed  PubMed Central  Google Scholar 

    85. 85.

      Walsh TS, Boyd JA, Watson D, Hope D, Lewis S, Krishan A, Forbes JF, Ramsay P, Pearse R, Wallis C, Cairns C, Cole S, Wyncoll D (2013) Restrictive versus liberal transfusion strategies for older mechanically ventilated critically ill patients: a randomized pilot trial. Crit Care Med 41:2354–2363

      PubMed  Google Scholar 

    86. 86.

      Holst LB, Haase N, Wetterslev J, Wernerman J, Guttormsen AB, Karlsson S, Johansson PI, Aneman A, Vang ML, Winding R, Nebrich L, Nibro HL, Rasmussen BS, Lauridsen JR, Nielsen JS, Oldner A, Pettila V, Cronhjort MB, Andersen LH, Pedersen UG, Reiter N, Wiis J, White JO, Russell L, Thornberg KJ, Hjortrup PB, Muller RG, Moller MH, Steensen M, Tjader I, Kilsand K, Odeberg-Wernerman S, Sjobo B, Bundgaard H, Thyo MA, Lodahl D, Maerkedahl R, Albeck C, Illum D, Kruse M, Winkel P, Perner A (2014) Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med 371:1381–1391

      PubMed  Google Scholar 

    87. 87.

      Palmieri TL, Holmes JHt AB, Peck M, Potenza B, Cochran A, King BT, Dominic W, Cartotto R, Bhavsar D, Kemalyan N, Tredget E, Stapelberg F, Mozingo D, Friedman B, Greenhalgh DG, Taylor SL, Pollock BH (2017) Transfusion Requirement in Burn Care Evaluation (TRIBE): A Multicenter Randomized Prospective Trial of Blood Transfusion in Major Burn Injury. Ann Surg 266:595–602

      PubMed  PubMed Central  Google Scholar 

    88. 88.

      Carson JL, Stanworth SJ, Roubinian N, Fergusson DA, Triulzi D, Doree C, Hebert PC (2016) Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev 10:Cd2042

      PubMed  Google Scholar 

    89. 89.

      Rohde JM, Dimcheff DE, Blumberg N, Saint S, Langa KM, Kuhn L, Hickner A, Rogers MA (2014) Health care-associated infection after red blood cell transfusion: a systematic review and meta-analysis. JAMA 311:1317–1326

      CAS  PubMed  PubMed Central  Google Scholar 

    90. 90.

      AlFaleh K, Al-Jebreen A, Baqays A, Al-Hallali A, Bedaiwi K, Al-Balahi N, AlGhamdi A, AlKharfi T, Alzahem A (2014) Association of packed red blood cell transfusion and necrotizing enterocolitis in very low birth weight infants. J Neonatal Perinatal Med 7:193–198

      CAS  PubMed  Google Scholar 

    91. 91.

      Dame C, Sciesielski LK, Rau C, Badur CA, Buhrer C (2018) The Erythropoietin Promoter Variant rs1617640 Is Not Associated with Severe Retinopathy of Prematurity, Independent of Treatment with Erythropoietin. J Pediatr 199:256–259

      CAS  PubMed  Google Scholar 

    92. 92.

      Gephart SM (2012) Transfusion-associated necrotizing enterocolitis: evidence and uncertainty. Adv Neonatal Care 12:232–236

      PubMed  PubMed Central  Google Scholar 

    93. 93.

      Knee D, Knoop S, Davis AT, Rawson B, DiCarlo A, Olivero R (2019) Outcomes after implementing restrictive blood transfusion criteria in extremely premature infants. J Perinatol 39:1089–1097

      PubMed  Google Scholar 

    94. 94.

      Mohamed A, Shah PS (2012) Transfusion associated necrotizing enterocolitis: a meta-analysis of observational data. Pediatrics 129:529–540

      PubMed  Google Scholar 

    95. 95.

      Keir AK, Yang J, Harrison A, Pelausa E, Shah PS (2015) Temporal changes in blood product usage in preterm neonates born at less than 30 weeks’ gestation in Canada. Transfusion 55:1340–1346

      PubMed  Google Scholar 

    96. 96.

      Keir A, Pal S, Trivella M, Lieberman L, Callum J, Shehata N, Stanworth SJ (2016) Adverse effects of red blood cell transfusions in neonates: a systematic review and meta-analysis. Transfusion 56:2773–2780

      PubMed  Google Scholar 

    97. 97.

      Haiden N, Schwindt J, Cardona F, Berger A, Klebermass K, Wald M, Kohlhauser-Vollmuth C, Jilma B, Pollak A (2006) Effects of a combined therapy of erythropoietin, iron, folate, and vitamin B12 on the transfusion requirements of extremely low birth weight infants. Pediatrics 118:2004–2013

      PubMed  Google Scholar 

    98. 98.

      Fergusson DA, Hebert P, Hogan DL, LeBel L, Rouvinez-Bouali N, Smyth JA, Sankaran K, Tinmouth A, Blajchman MA, Kovacs L, Lachance C, Lee S, Walker CR, Hutton B, Ducharme R, Balchin K, Ramsay T, Ford JC, Kakadekar A, Ramesh K, Shapiro S (2012) Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low-birth-weight infants: the ARIPI randomized trial. JAMA 308:1443–1451

      CAS  PubMed  Google Scholar 

    99. 99.

      Goodman AM, Pollack MM, Patel KM, Luban NL (2003) Pediatric red blood cell transfusions increase resource use. J Pediatr 142:123–127

      PubMed  Google Scholar 

    100. 100.

      Kneyber MC, Grotenhuis F, Berger RF, Ebels TW, Burgerhof JG, Albers MJ (2013) Transfusion of leukocyte-depleted RBCs is independently associated with increased morbidity after pediatric cardiac surgery. Pediatr Crit Care Med 14:298–305

      PubMed  Google Scholar 

    101. 101.

      Lacroix J, Hebert PC, Hutchison JS, Hume HA, Tucci M, Ducruet T, Gauvin F, Collet JP, Toledano BJ, Robillard P, Joffe A, Biarent D, Meert K, Peters MJ (2007) Transfusion strategies for patients in pediatric intensive care units. N Engl J Med 356:1609–1619

      CAS  PubMed  Google Scholar 

    102. 102.

      Cholette JM, Rubenstein JS, Alfieris GM, Powers KS, Eaton M, Lerner NB (2011) Children with single-ventricle physiology do not benefit from higher hemoglobin levels post cavopulmonary connection: results of a prospective, randomized, controlled trial of a restrictive versus liberal red-cell transfusion strategy. Pediatr Crit Care Med 12:39–45

      PubMed  Google Scholar 

    103. 103.

      de Gast-Bakker DH, de Wilde RB, Hazekamp MG, Sojak V, Zwaginga JJ, Wolterbeek R, de Jonge E (2013) Gesink-van der Veer BJ: Safety and effects of two red blood cell transfusion strategies in pediatric cardiac surgery patients: a randomized controlled trial. Intensive Care Med 39:2011–2019

      PubMed  Google Scholar 

    104. 104.

      Cholette JM, Swartz MF, Rubenstein J, Henrichs KF, Wang H, Powers KS, Daugherty LE, Alfieris GM, Gensini F, Blumberg N (2017) Outcomes Using a Conservative Versus Liberal Red Blood Cell Transfusion Strategy in Infants Requiring Cardiac Operation. Ann Thorac Surg 103:206–214

      PubMed  Google Scholar 

    105. 105.

      Dhabangi A, Ainomugisha B, Cserti-Gazdewich C, Ddungu H, Kyeyune D, Musisi E, Opoka R, Stowell CP, Dzik WH (2015) Effect of Transfusion of Red Blood Cells With Longer vs Shorter Storage Duration on Elevated Blood Lactate Levels in Children With Severe Anemia: The TOTAL Randomized Clinical Trial. JAMA 314:2514–2523

      CAS  PubMed  Google Scholar 

    106. 106.

      Spinella PC, Tucci M, Fergusson DA, Lacroix J, Hebert PC, Leteurtre S, Schechtman KB, Doctor A, Berg RA, Bockelmann T, Caro JJ, Chiusolo F, Clayton L, Cholette JM, Guerra GG, Josephson CD, Menon K, Muszynski JA, Nellis ME, Sarpal A, Schafer S, Steiner ME, Turgeon AF (2019) Effect of Fresh vs Standard-issue Red Blood Cell Transfusions on Multiple Organ Dysfunction Syndrome in Critically Ill Pediatric Patients: A Randomized Clinical Trial. JAMA 322:2179–2190

      PubMed  PubMed Central  Google Scholar 

    107. 107.

      Burnet M (1957) Cancer; a biological approach. I. The processes of control. Br Med J 1:779–786

      CAS  PubMed  PubMed Central  Google Scholar 

    108. 108.

      Prehn RT, Main JM (1957) Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18:769–778

      CAS  PubMed  Google Scholar 

    109. 109.

      Jonkman-Berk BM, van den Berg JM, Ten Berge IJ, Bredius RG, Driessen GJ, Dalm VA, van Dissel JT, van Deuren M, Ellerbroek PM, van der Flier M, van Hagen PM, van Montfrans JM, Rutgers A, Scholvinck EH, de Vries E, van Beem RT, Kuijpers TW (2015) Primary immunodeficiencies in the Netherlands: national patient data demonstrate the increased risk of malignancy. Clin Immunol 156:154–162

      CAS  PubMed  Google Scholar 

    110. 110.

      Kinlen LJ (1985) Incidence of cancer in rheumatoid arthritis and other disorders after immunosuppressive treatment. Am J Med 78:44–49

      CAS  PubMed  Google Scholar 

    111. 111.

      Mayor PC, Eng KH, Singel KL, Abrams SI, Odunsi K, Moysich KB, Fuleihan R, Garabedian E, Lugar P, Ochs HD, Bonilla FA, Buckley RH, Sullivan KE, Ballas ZK, Cunningham-Rundles C, Segal BH (2018) Cancer in primary immunodeficiency diseases: Cancer incidence in the United States Immune Deficiency Network Registry. J Allergy Clin Immunol 141:1028–1035

      PubMed  Google Scholar 

    112. 112.

      Opelz G, Terasaki PI (1974) Poor kidney-transplant survival in recipients with frozen-blood transfusions or no transfusions. Lancet 2:696–698

      CAS  PubMed  Google Scholar 

    113. 113.

      Opelz G, Terasaki PI (1980) Dominant effect of transfusions on kidney graft survival. Transplantation 29:153–158

      CAS  PubMed  Google Scholar 

    114. 114.

      Gantt CL (1981) Red blood cells for cancer patients. Lancet 2:363

      CAS  PubMed  Google Scholar 

    115. 115.

      Bordin JO, Bardossy L, Blajchman MA (1994) Growth enhancement of established tumors by allogeneic blood transfusion in experimental animals and its amelioration by leukodepletion: the importance of the timing of the leukodepletion. Blood 84:344–348

      CAS  PubMed  Google Scholar 

    116. 116.

      Goubran H, Sheridan D, Radosevic J, Burnouf T, Seghatchian J (2017) Transfusion-related immunomodulation and cancer. Transfus Apher Sci 56:336–340

      PubMed  Google Scholar 

    117. 117.

      Madeddu C, Gramignano G, Astara G, Demontis R, Sanna E, Atzeni V, Maccio A (2018) Pathogenesis and Treatment Options of Cancer Related Anemia: Perspective for a Targeted Mechanism-Based Approach. Front Physiol 9:1294

      PubMed  PubMed Central  Google Scholar 

    118. 118.

      Ludwig H, Van Belle S, Barrett-Lee P, Birgegard G, Bokemeyer C, Gascon P, Kosmidis P, Krzakowski M, Nortier J, Olmi P, Schneider M, Schrijvers D (2004) The European Cancer Anaemia Survey (ECAS): a large, multinational, prospective survey defining the prevalence, incidence, and treatment of anaemia in cancer patients. Eur J Cancer 40:2293–2306

      PubMed  Google Scholar 

    119. 119.

      Edgren G, Bagnardi V, Bellocco R, Hjalgrim H, Rostgaard K, Melbye M, Reilly M, Adami HO, Hall P, Nyren O (2010) Pattern of declining hemoglobin concentration before cancer diagnosis. Int J Cancer 127:1429–1436

      CAS  PubMed  Google Scholar 

    120. 120.

      Riedl R, Engels EA, Warren JL, Berghold A, Ricker W, Pfeiffer RM (2013) Blood transfusions and the subsequent risk of cancers in the United States elderly. Transfusion 53:2198–2206

      PubMed  PubMed Central  Google Scholar 

    121. 121.

      Hjalgrim H, Edgren G, Rostgaard K, Reilly M, Tran TN, Titlestad KE, Shanwell A, Jersild C, Adami J, Wikman A, Gridley G, Wideroff L, Nyren O, Melbye M (2007) Cancer incidence in blood transfusion recipients. J Natl Cancer Inst 99:1864–1874

      PubMed  Google Scholar 

    122. 122.

      Yang TO, Cairns BJ, Reeves GK, Green J, Beral V (2017) Cancer risk among 21st century blood transfusion recipients. Ann Oncol 28:393–399

      CAS  PubMed  Google Scholar 

    123. 123.

      Cerhan JR, Wallace RB, Folsom AR, Potter JD, Munger RG, Prineas RJ (1993) Transfusion history and cancer risk in older women. Ann Intern Med 119:8–15

      CAS  PubMed  Google Scholar 

    124. 124.

      Fujino Y, Tamakoshi A, Hoshiyama Y, Mikami H, Okamoto N, Ohno Y, Yoshimura T (2004) Prospective study of transfusion history and thyroid cancer incidence among females in Japan. Int J Cancer 112:722–725

      CAS  PubMed  Google Scholar 

    125. 125.

      Chang CM, Quinlan SC, Warren JL, Engels EA (2010) Blood transfusions and the subsequent risk of hematologic malignancies. Transfusion 50:2249–2257

      PubMed  PubMed Central  Google Scholar 

    126. 126.

      Blomberg J, Moller T, Olsson H, Anderson H, Jonsson M (1993) Cancer morbidity in blood recipients—results of a cohort study. Eur J Cancer 29a:2101–2105

      CAS  PubMed  Google Scholar 

    127. 127.

      Inoue Y, Wada Y, Motohashi Y, Koizumi A (2010) History of blood transfusion before 1990 is associated with increased risk for cancer mortality independently of liver disease: a prospective long-term follow-up study. Environ Health Prev Med 15:180–187

      PubMed  Google Scholar 

    128. 128.

      Castillo JJ, Dalia S, Pascual SK (2010) Association between red blood cell transfusions and development of non-Hodgkin lymphoma: a meta-analysis of observational studies. Blood 116:2897–2907

      CAS  PubMed  Google Scholar 

    129. 129.

      Morton LM, Slager SL, Cerhan JR, Wang SS, Vajdic CM, Skibola CF, Bracci PM, de Sanjose S, Smedby KE, Chiu BC, Zhang Y, Mbulaiteye SM, Monnereau A, Turner JJ, Clavel J, Adami HO, Chang ET, Glimelius B, Hjalgrim H, Melbye M, Crosignani P, di Lollo S, Miligi L, Nanni O, Ramazzotti V, Rodella S, Costantini AS, Stagnaro E, Tumino R, Vindigni C, Vineis P, Becker N, Benavente Y, Boffetta P, Brennan P, Cocco P, Foretova L, Maynadie M, Nieters A, Staines A, Colt JS, Cozen W, Davis S, de Roos AJ, Hartge P, Rothman N, Severson RK, Holly EA, Call TG, Feldman AL, Habermann TM, Liebow M, Blair A, Cantor KP, Kane EV, Lightfoot T, Roman E, Smith A, Brooks-Wilson A, Connors JM, Gascoyne RD, Spinelli JJ, Armstrong BK, Kricker A, Holford TR, Lan Q, Zheng T, Orsi L, Dal Maso L, Franceschi S, La Vecchia C, Negri E, Serraino D, Bernstein L, Levine A, Friedberg JW, Kelly JL, Berndt SI, Birmann BM, Clarke CA, Flowers CR, Foran JM, Kadin ME, Paltiel O, Weisenburger DD, Linet MS, Sampson JN (2014) Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr 48:130–144

    130. 130.

      Memon A, Doll R (1994) A search for unknown blood-borne oncogenic viruses. Int J Cancer 58:366–368

      CAS  PubMed  Google Scholar 

    131. 131.

      Anderson H, Brandt L, Ericson A, Olsson H, Moller T (1998) Blood transfusion at delivery and risk of subsequent malignant lymphoma in the mother. Vox Sang 75:145–148

      CAS  PubMed  Google Scholar 

    132. 132.

      Skanberg J, Frisk B (1999) Blood transfusion does not influence the development of malignant tumours. Eur J Surg 165:528–534

      CAS  PubMed  Google Scholar 

    133. 133.

      Waymack JP, Chance WT (1988) Effect of blood transfusions on immune function: IV. Effect on tumor growth. J Surg Oncol 39:159–164

      CAS  PubMed  Google Scholar 

    134. 134.

      Busch OR, Hop WC, Hoynck van Papendrecht MA, Marquet RL, Jeekel J (1993) Blood transfusions and prognosis in colorectal cancer. N Engl J Med 328:1372–1376

      CAS  PubMed  Google Scholar 

    135. 135.

      Heiss MM, Mempel W, Delanoff C, Jauch KW, Gabka C, Mempel M, Dieterich HJ, Eissner HJ, Schildberg FW (1994) Blood transfusion-modulated tumor recurrence: first results of a randomized study of autologous versus allogeneic blood transfusion in colorectal cancer surgery. J Clin Oncol 12:1859–1867

      CAS  PubMed  Google Scholar 

    136. 136.

      Harlaar JJ, Gosselink MP, Hop WC, Lange JF, Busch OR, Jeekel H: Blood transfusions and prognosis in colorectal cancer: long-term results of a randomized controlled trial. Ann Surg 2012; 256: 681–686; discussion 686–687.

    137. 137.

      Cao L, Selby LV, Hu X, Zhang Y, Janjigian YY, Tang L, Coit DG, Brennan MF, Strong VE (2016) Risk factors for recurrence in T1-2N0 gastric cancer in the United States and China. J Surg Oncol 113:745–749

      CAS  PubMed  PubMed Central  Google Scholar 

    138. 138.

      Donohue JH, Williams S, Cha S, Windschitl HE, Witzig TE, Nelson H, Fitzgibbons RJ Jr., Wieand HS, Moertel CG (1995) Perioperative blood transfusions do not affect disease recurrence of patients undergoing curative resection of colorectal carcinoma: a Mayo/North Central Cancer Treatment Group study. J Clin Oncol 13:1671–1678

      CAS  PubMed  Google Scholar 

    139. 139.

      Edna TH, Bjerkeset T (1998) Perioperative blood transfusions reduce long-term survival following surgery for colorectal cancer. Dis Colon Rectum 41:451–459

      CAS  PubMed  Google Scholar 

    140. 140.

      Jagoditsch M, Pozgainer P, Klingler A, Tschmelitsch J (2006) Impact of blood transfusions on recurrence and survival after rectal cancer surgery. Dis Colon Rectum 49:1116–1130

      PubMed  Google Scholar 

    141. 141.

      Talukder Y, Stillwell AP, Siu SK, Ho YH (2014) Comparing survival and recurrence in curative stage I to III colorectal cancer in transfused and nontransfused patients. Int Surg 99:8–16

      PubMed  PubMed Central  Google Scholar 

    142. 142.

      Warschkow R, Guller U, Koberle D, Muller SA, Steffen T, Thurnheer M, Schmied BM, Tarantino I (2014) Perioperative blood transfusions do not impact overall and disease-free survival after curative rectal cancer resection: a propensity score analysis. Ann Surg 259:131–138

      PubMed  Google Scholar 

    143. 143.

      Mörner ME, Edgren G, Martling A, Gunnarsson U, Egenvall M (2017) Preoperative anaemia and perioperative red blood cell transfusion as prognostic factors for recurrence and mortality in colorectal cancer-a Swedish cohort study. Int J Colorectal Dis 32:223–232

      PubMed  Google Scholar 

    144. 144.

      Amri R, Dinaux AM, Leijssen LGJ, Kunitake H, Bordeianou LG, Berger DL (2017) Do packed red blood cell transfusions really worsen oncologic outcomes in colon cancer? Surgery 162:586–591

      PubMed  Google Scholar 

    145. 145.

      Wu HL, Tai YH, Lin SP, Chan MY, Chen HH, Chang KY (2018) The Impact of Blood Transfusion on Recurrence and Mortality Following Colorectal Cancer Resection: A Propensity Score Analysis of 4,030 Patients. Sci Rep 8:13345

      PubMed  PubMed Central  Google Scholar 

    146. 146.

      Choi GH, Kim DH, Choi SB, Kang CM, Kim KS, Choi JS, Lee WJ, Han KH, Chon CY, Kim BR (2009) The preoperative positivity for serum hepatitis B e antigen did not affect overall survival after curative resection of hepatitis B virus-related hepatocellular carcinoma. J Gastroenterol Hepatol 24:391–398

      CAS  PubMed  Google Scholar 

    147. 147.

      Wang CC, Iyer SG, Low JK, Lin CY, Wang SH, Lu SN, Chen CL (2009) Perioperative factors affecting long-term outcomes of 473 consecutive patients undergoing hepatectomy for hepatocellular carcinoma. Ann Surg Oncol 16:1832–1842

      PubMed  Google Scholar 

    148. 148.

      Harada N, Shirabe K, Maeda T, Kayashima H, Ishida T, Maehara Y (2015) Blood transfusion is associated with recurrence of hepatocellular carcinoma after hepatectomy in Child-Pugh class A patients. World J Surg 39:1044–1051

      PubMed  Google Scholar 

    149. 149.

      Yang T, Lu JH, Lau WY, Zhang TY, Zhang H, Shen YN, Alshebeeb K, Wu MC, Schwartz M, Shen F (2016) Perioperative blood transfusion does not influence recurrence-free and overall survivals after curative resection for hepatocellular carcinoma: A Propensity Score Matching Analysis. J Hepatol 64:583–593

      PubMed  Google Scholar 

    150. 150.

      Linder BJ, Frank I, Cheville JC, Tollefson MK, Thompson RH, Tarrell RF, Thapa P, Boorjian SA (2013) The impact of perioperative blood transfusion on cancer recurrence and survival following radical cystectomy. Eur Urol 63:839–845

      PubMed  Google Scholar 

    151. 151.

      Abel EJ, Linder BJ, Bauman TM, Bauer RM, Thompson RH, Thapa P, Devon ON, Tarrell RF, Frank I, Jarrard DF, Downs TM, Boorjian SA (2014) Perioperative blood transfusion and radical cystectomy: does timing of transfusion affect bladder cancer mortality? Eur Urol 66:1139–1147

      PubMed  Google Scholar 

    152. 152.

      Kluth LA, Xylinas E, Rieken M, El Ghouayel M, Sun M, Karakiewicz PI, Lotan Y, Chun FK, Boorjian SA, Lee RK, Briganti A, Roupret M, Fisch M, Scherr DS, Shariat SF (2014) Impact of peri-operative blood transfusion on the outcomes of patients undergoing radical cystectomy for urothelial carcinoma of the bladder. BJU Int 113:393–398

      PubMed  Google Scholar 

    153. 153.

      Moschini M, Dell’ Oglio P, Capogrosso P, Cucchiara V, Luzzago S, Gandaglia G, Zattoni F, Briganti A, Damiano R, Montorsi F, Salonia A, Colombo R (2015) Effect of Allogeneic Intraoperative Blood Transfusion on Survival in Patients Treated With Radical Cystectomy for Nonmetastatic Bladder Cancer: Results From a Single High-Volume Institution. Clin Genitourin Cancer 13:562–567

      PubMed  Google Scholar 

    154. 154.

      Vetterlein MW, Gild P, Kluth LA, Seisen T, Gierth M, Fritsche HM, Burger M, Protzel C, Hakenberg OW, von Landenberg N, Roghmann F, Noldus J, Nuhn P, Pycha A, Rink M, Chun FK, May M, Fisch M, Aziz A (2018) Peri-operative allogeneic blood transfusion does not adversely affect oncological outcomes after radical cystectomy for urinary bladder cancer: a propensity score-weighted European multicentre study. BJU Int 121:101–110

      PubMed  Google Scholar 

    155. 155.

      Uccella S, Ghezzi F, Cromi A, Bogani G, Formenti G, Donadello N, Serati M, Bolis P (2013) Perioperative allogenic blood transfusions and the risk of endometrial cancer recurrence. Arch Gynecol Obstet 287:1009–1016

      PubMed  Google Scholar 

    156. 156.

      Lopez-Aguiar AG, Ethun CG, McInnis MR, Pawlik TM, Poultsides G, Tran T, Idrees K, Isom CA, Fields RC, Krasnick BA, Weber SM, Salem A, Martin RCG, Scoggins CR, Shen P, Mogal HD, Schmidt C, Beal EW, Hatzaras I, Shenoy R, Cardona K, Maithel SK (2018) Association of perioperative transfusion with survival and recurrence after resection of gallbladder cancer: A 10-institution study from the US Extrahepatic Biliary Malignancy Consortium. J Surg Oncol 117:1638–1647

      CAS  PubMed  Google Scholar 

    157. 157.

      Abu-Ghanem Y, Dotan Z, Zilberman DE, Kaver I, Ramon J (2019) Intraoperative but not postoperative blood transfusion adversely affect cancer recurrence and survival following nephrectomy for renal cell carcinoma. Sci Rep 9:1160

      PubMed  PubMed Central  Google Scholar 

    158. 158.

      Linder BJ, Boorjian SA (2013) Reply to Samuel Bishara and Jim Adshead’s letter to the editor re: Brian J. Linder, Igor Frank, John C. Cheville, et al. The impact of perioperative blood transfusion on cancer recurrence and survival following radical cystectomy. Eur Urol 63:839–845. Eur Urol 64:e49–50

    159. 159.

      Ito Y, Kanda M, Ito S, Mochizuki Y, Teramoto H, Ishigure K, Murai T, Asada T, Ishiyama A, Matsushita H, Tanaka C, Kobayashi D, Fujiwara M, Murotani K, Kodera Y (2019) Intraoperative Blood Loss is Associated with Shortened Postoperative Survival of Patients with Stage II/III Gastric Cancer: Analysis of a Multi-institutional Dataset. World J Surg 43:870–877

      PubMed  Google Scholar 

    Download references

    Rights and permissions

    Reprints and Permissions

    About this article

    Verify currency and authenticity via CrossMark

    Cite this article

    Wissenschaftliche Erläuterungen zur Stellungnahme Transfusionsassoziierte Immunmodulation (TRIM) des Arbeitskreises Blut vom 13. Februar 2020. Bundesgesundheitsbl 63, 1025–1053 (2020). https://doi.org/10.1007/s00103-020-03183-y

    Download citation