Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Körperliche Aktivität in der NAKO Gesundheitsstudie: erste Ergebnisse des multimodalen Erhebungskonzepts

Physical activity in the German National Cohort (NAKO): use of multiple assessment tools and initial results

  • 27 Accesses

Zusammenfassung

Hintergrund

Die körperliche Aktivität stellt ein komplexes Verhalten dar, dessen valide und reliable Erfassung in groß angelegten populationsbasierten Studien mit besonderen Herausforderungen einhergeht. In der bundesweiten NAKO Gesundheitsstudie liegen zur Halbzeit der Basiserhebung die Daten zur körperlichen Aktivität für 100.000 Teilnehmende vor.

Ziel

Beschreibung der Erfassung der körperlichen Aktivität und Präsentation erster deskriptiver Ergebnisse.

Material und Methoden

Das multimodale Erhebungskonzept bestand aus zwei Fragebögen, dem Questionnaire on Annual Physical Activity Pattern (QUAP) und dem Global Physical Activity Questionnaire (GPAQ), einem computerbasierten Erinnerungsprotokoll der vergangenen 24 h (cpar24) und einer 7‑Tage-Akzelerometrie (Actigraph GT3X/+; Fa. ActiGraph, Pensacola, FL, USA).

Ergebnisse

Für die einzelnen Erhebungsmodule lagen auswertbare Datensätze in unterschiedlicher Zahl vor (QUAP: n = 16.372; GPAQ: n = 90.900; cpar24: n = 23.989; Akzelerometrie: n = 35.218). Die Analysen der einzelnen Module ergaben unterschiedliche Durchschnittswerte für die moderate oder intensive körperliche Gesamtaktivität der Teilnehmenden: Bei Frauen wurden 75–216 min/Tag gemessen, bei Männern 73–224 min/Tag. Personen der Altersgruppe 20–39 Jahre verbrachten 66–200 min/Tag in moderater oder intensiver körperlicher Gesamtaktivität, während Personen der Altersgruppe 40–69 Jahre 78–244 min/Tag aufwendeten.

Schlussfolgerung

Erste modulübergreifende Analysen der körperlichen Aktivität in der NAKO zeigen den Nutzen komplementär eingesetzter Erhebungsmethoden. Die umfangreichen Daten stellen eine wertvolle Ressource für die Charakterisierung der Zusammenhänge zwischen körperlicher Aktivität und Krankheitsprävention dar, die in der Zukunft erfolgen soll.

Abstract

Background

Physical activity is a complex behavior that is difficult to measure validly and reliably in large, population-based studies. Data on physical activity are available for the initial 100,000 participants of the German National Cohort.

Objectives

To describe the baseline physical activity assessment in the cohort and to present initial descriptive results.

Material and methods

Physical activity was assessed using a combination of tools, including two self-administered questionnaires, the Questionnaire on Annual Physical Activity Pattern (QUAP) and the Global Physical Activity Questionnaire (GPAQ); a computer-based 24‑h physical activity recall (cpar24); and 7‑day accelerometry (Actigraph GT3X/+; ActiGraph, Pensacola, FL, USA).

Results

The availability of data varied between assessment instruments (QUAP: n = 16,372; GPAQ: n = 90,900; cpar24: n = 23,989; accelerometry: n = 35,218). Analyses across measurement tools showed that on average, women spent 75 to 216 min/d, and men spent 73 to 224 min/d in moderate or higher intensity total physical activity. Persons aged 20–39 years spent 66 to 200 min/d, and persons aged 40–69 years spent 78 to 244 min/d in moderate or higher intensity total physical activity.

Conclusions

Initial baseline analyses of physical activity in this cohort show the value of using a combination of questionnaires, 24‑h recalls, and a movement sensor. The comprehensive data collection represents a valuable resource for future analyses and will improve our understanding of the association between physical activity and disease prevention.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. 1.

    Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100(2):126–131

  2. 2.

    Warburton DER, Bredin SSD (2017) Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol 32(5):541–556

  3. 3.

    Lagerros YT, Lagiou P (2007) Assessment of physical activity and energy expenditure in epidemiological research of chronic diseases. Eur J Epidemiol 22(6):353–362

  4. 4.

    Pettee Gabriel KK, Morrow JR Jr., Woolsey AL (2012) Framework for physical activity as a complex and multidimensional behavior. J Phys Act Health 9(1):S11–18

  5. 5.

    German National Cohort Consortium (2014) The German national cohort: aims, study design and organization. Eur J Epidemiol 29(5):371–382

  6. 6.

    Ahrens W, Greiser H, Linseisen J et al (2014) The design of a nationwide cohort study in Germany : the pretest studies of the German national cohort (GNC). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 57(11):1246–1254

  7. 7.

    Kohler S, Behrens G, Olden M et al (2017) Design and evaluation of a computer-based 24-hour physical activity recall (cpar24) instrument. J Med Internet Res 19(5):e186

  8. 8.

    Brühmann BA, Schmidt ME, Wientzek A et al (2014) Reliability and validity of the questionnaire on annual physical activity pattern: a validation study using combined heart rate and accelerometry data as an objective measurement. World J Epidemiol Cancer Prev 3:7

  9. 9.

    Sitthipornvorakul E, Janwantanakul P, van der Beek AJ (2014) Correlation between pedometer and the global physical activity questionnaire on physical activity measurement in office workers. BMC Res Notes 7:280

  10. 10.

    Chu AH, Ng SH, Koh D et al (2015) Reliability and validity of the self- and interviewer-administered versions of the global physical activity questionnaire (GPAQ). PLoS ONE 10(9):e136944

  11. 11.

    World Health Organization (WHO) (2013) Global physical activity questionnaire (GPAQ) analysis guide

  12. 12.

    Matthews CE, Berrigan D, Fischer B et al (2019) Use of previous-day recalls of physical activity and sedentary behavior in epidemiologic studies: results from four instruments. BMC Public Health 19(2):478

  13. 13.

    Troiano RP, Pettee Gabriel KK, Welk GJ et al (2012) Reported physical activity and sedentary behavior: why do you ask? J Phys Act Health 9(1):S68–75

  14. 14.

    Westerterp KR (2009) Assessment of physical activity: a critical appraisal. Eur J Appl Physiol 105(6):823–828

  15. 15.

    Sasaki JE, John D, Freedson PS (2011) Validation and comparison of ActiGraph activity monitors. J Sci Med Sport 14(5):411–416

  16. 16.

    Freedson PS, Lyden K, Kozey-Keadle S et al (2011) Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: validation on an independent sample. J Appl Physiol (1985) 111(6):1804–1812

  17. 17.

    Hagstromer M, Oja P, Sjostrom M (2007) Physical activity and inactivity in an adult population assessed by accelerometry. Med Sci Sports Exerc 39(9):1502–1508

  18. 18.

    Troiano RP, Berrigan D, Dodd KW et al (2008) Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 40(1):181–188

  19. 19.

    Trost SG, McIver KL, Pate RR (2005) Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc 37(11):S531–543

  20. 20.

    Freedson PS, Melanson E, Sirard J (1998) Calibration of the computer science and applications, inc. accelerometer. Med Sci Sports Exerc 30(5):777–781

  21. 21.

    van Hees VT, Ekelund U (2009) Novel daily energy expenditure estimation by using objective activity type classification: where do we go from here? J Appl Physiol (1985) 107(3):639–640

  22. 22.

    Hoos MB, Plasqui G, Gerver WJ et al (2003) Physical activity level measured by doubly labeled water and accelerometry in children. Eur J Appl Physiol 89(6):624–626

  23. 23.

    R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  24. 24.

    Arnardottir NY, Oskarsdottir ND, Brychta RJ et al (2017) Comparison of summer and winter objectively measured physical activity and sedentary behavior in older adults: age, gene/environment susceptibility Reykjavik study. Int J Environ Res Public Health 14(10):E1268. https://doi.org/10.3390/ijerph14101268

  25. 25.

    Hagstromer M, Rizzo NS, Sjostrom M (2014) Associations of season and region on objectively assessed physical activity and sedentary behaviour. J Sports Sci 32(7):629–634

  26. 26.

    O’Connell SE, Griffiths PL, Clemes SA (2014) Seasonal variation in physical activity, sedentary behaviour and sleep in a sample of UK adults. Ann Hum Biol 41(1):1–8

  27. 27.

    Witham MD, Donnan PT, Vadiveloo T et al (2014) Association of day length and weather conditions with physical activity levels in older community dwelling people. PLoS ONE 9(1):e85331

  28. 28.

    Klenk J, Buchele G, Rapp K et al (2012) Walking on sunshine: effect of weather conditions on physical activity in older people. J Epidemiol Community Health 66(5):474–476

  29. 29.

    Wu YT, Luben R, Wareham N et al (2017) Weather, day length and physical activity in older adults: cross-sectional results from the European prospective investigation into cancer and nutrition (EPIC) Norfolk cohort. PLoS ONE 12(5):e177767

  30. 30.

    Bonnefoy M, Normand S, Pachiaudi C et al (2001) Simultaneous validation of ten physical activity questionnaires in older men: a doubly labeled water study. J Am Geriatr Soc 49(1):28–35

  31. 31.

    Motl RW, McAuley E, DiStefano C (2005) Is social desirability associated with self-reported physical activity? Prev Med 40(6):735–739

  32. 32.

    Brenner PS, DeLamater J (2016) Lies, damned lies, and survey self-reports? Identity as a cause of measurement bias. Soc Psychol Q 79(4):333–354

  33. 33.

    Shephard RJ (2003) Limits to the measurement of habitual physical activity by questionnaires. Br J Sports Med 37(3):197–206 (discussion 206)

  34. 34.

    Harms T, Gershuny J, Doherty A et al (2019) A validation study of the Eurostat harmonised European time use study (HETUS) diary using wearable technology. BMC Public Health 19(2):455

  35. 35.

    Dunton GF, Berrigan D, Ballard-Barbash R et al (2009) Joint associations of physical activity and sedentary behaviors with body mass index: results from a time use survey of US adults. Int J Obes (Lond) 33(12):1427–1436

  36. 36.

    Adams SA, Matthews CE, Ebbeling CB et al (2005) The effect of social desirability and social approval on self-reports of physical activity. Am J Epidemiol 161(4):389–398

  37. 37.

    Matthews CE, Keadle SK, Sampson J et al (2013) Validation of a previous-day recall measure of active and sedentary behaviors. Med Sci Sports Exerc 45(8):1629–1638

  38. 38.

    Dunton GF, Berrigan D, Ballard-Barbash R et al (2008) Social and physical environments of sports and exercise reported among adults in the American time use survey. Prev Med 47(5):519–524

  39. 39.

    McAuley E, Blissmer B, Marquez DX et al (2000) Social relations, physical activity, and well-being in older adults. Prev Med 31(5):608–617

  40. 40.

    Janz KF (2006) Physical activity in epidemiology: moving from questionnaire to objective measurement. Br J Sports Med 40(3):191–192

  41. 41.

    Watson KB, Carlson SA, Carroll DD et al (2014) Comparison of accelerometer cut points to estimate physical activity in US adults. J Sports Sci 32(7):660–669

  42. 42.

    Matthews CE, Keadle SK, Berrigan D et al (2018) Influence of accelerometer calibration approach on moderate-vigorous physical activity estimates for adults. Med Sci Sports Exerc 50(11):2285–2291

  43. 43.

    Skender S, Ose J, Chang-Claude J et al (2016) Accelerometry and physical activity questionnaires—a systematic review. BMC Public Health 16:515

Download references

Danksagung

Wir danken allen Teilnehmerinnen und Teilnehmern sowie allen Mitarbeiterinnen und Mitarbeitern der NAKO Gesundheitsstudie.

Förderung

Dieses Projekt wurde mit Daten der NAKO Gesundheitsstudie durchgeführt (www.nako.de). Die NAKO Gesundheitsstudie wird durch das Bundesministerium für Bildung und Forschung (BMBF, Förderkennzeichen 01ER1301A/B/C und 01ER1511D), die Bundesländer und die Helmholtz-Gemeinschaft gefördert sowie durch die beteiligten Universitäten und Institute der Leibniz-Gemeinschaft finanziell unterstützt.

Author information

Correspondence to Prof. Dr. Dr. Michael Leitzmann.

Ethics declarations

Interessenkonflikt

M. Leitzmann, S. Gastell, A. Hillreiner, F. Herbolsheimer, S.E. Baumeister, B. Bohn, M. Brandes, H. Greiser, L. Jaeschke, C. Jochem, A. Kluttig, L. Krist, K.B. Michels, T. Pischon, A. Schmermund, O. Sprengeler, J. Zschocke, W. Ahrens, H. Baurecht, H. Becher, K. Berger, H. Brenner, S. Castell, B. Fischer, C.-W. Franzke, J. Fricke, W. Hoffmann, B. Holleczek, R. Kaaks, S. Kalinowski, T. Keil, Y. Kemmling, O. Kuß, N. Legath, W. Lieb, J. Linseisen, M. Löffler, R. Mikolajczyk, N. Obi, A. Peters, I. Ratjen, T. Schikowski, M.B. Schulze, A. Stang, S. Thierry, H. Völzke, K. Wirkner und K. Steindorf geben an, dass kein Interessenkonflikt besteht.

Alle beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen Teilnehmenden liegt eine Einverständniserklärung vor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leitzmann, M., Gastell, S., Hillreiner, A. et al. Körperliche Aktivität in der NAKO Gesundheitsstudie: erste Ergebnisse des multimodalen Erhebungskonzepts. Bundesgesundheitsbl (2020). https://doi.org/10.1007/s00103-020-03099-7

Download citation

Schlüsselwörter

  • Kohortenstudie
  • Epidemiologie
  • Prävention

Keywords

  • Cohort study
  • Epidemiology
  • Prevention