Lungenkrebsscreening: Aktuelle Entwicklungen

Lung cancer screening: current trends

Zusammenfassung

Screeningstudien zum konventionellen Röntgen der Lunge und zu Sputumuntersuchungen konnten keine Reduktion der Lungenkrebsmortalität belegen. Hingegen scheint das Screening mittels Low-Dose-Computertomographie (LDCT) Erfolg versprechender zu sein, da es bei vergleichsweise geringer Strahlenbelastung die Entdeckung von Tumorherden in frühen Stadien ermöglicht. In zwei kleineren, randomisierten klinischen Studien zum LDCT-Screening in Europa konnte keine Reduktion der Lungenkrebsmortalität nachgewiesen werden. In der mit Abstand größten Studie, dem US-amerikanischen National Lung Screening Trial (NLST), wurde jedoch eine deutliche Reduktion der Lungenkrebsmortalität um relativ 20,0 % (95 % Konfidenzintervall: 6,8–26,7 %) und der Gesamtmortalität um relativ 6,7 % (95 % KI: 1,2–13,6 %) berichtet. Ein gravierender Nachteil des LDCT ist der NLST-Studie zufolge der niedrige positive prädiktive Wert von positiven Screeningergebnissen: Nur bei 4 von 100 positiven Testergebnissen lag tatsächlich ein Lungenkrebs vor.

Im vorliegenden Beitrag werden Vor- und Nachteile des LDCT-Screenings sowie offene Fragen systematisch diskutiert. Der möglichen Senkung der lungenkrebsspezifischen und der gesamten Mortalität stehen als Nachteile falsch-positive Befunde, Überdiagnosen und die Strahlenbelastung gegenüber: Der Anteil der Überdiagnosen wird in der NLST-Studie je nach Auswertungsstrategie auf 11,0–18,5 % geschätzt, die Strahlenbelastung liegt mit etwa 1,5 mSv pro Scan deutlich unter dem Wert für eine Röntgenthoraxaufnahme mit etwa 8 mSv pro Scan. Offene Fragen beziehen sich darauf, wem das Screening angeboten werden soll, in welchen Zeitabständen gescreent werden soll und mit welchem Algorithmus durch das Screening entdeckte Knoten abgeklärt werden sollen.

Abstract

Screening studies on conventional chest X‑rays and on sputum cytology did not show a reduction in lung cancer mortality. However, screening by low-dose computed tomography (LDCT) is more promising because it allows tumor detection in early stages at fairly low radiation levels. No reduction of lung cancer mortality was found in two small, randomized clinical studies on LDCT screening in Europe. However, in the by far largest LDCT trial, the National Lung Screening Trial (NLST) in the USA, a relative reduction of lung cancer mortality by 20.0% (95% confidence interval: 6.8–26.7%), and a relative reduction of total mortality by 6.7% (95% CI: 1.2–13.6%) was reported. According to the NLST, an important disadvantage of LDCT is the low positive predictive value of abnormal screening results: lung cancer was confirmed in only 4 of 100 abnormal screening results.

In this paper, benefits and disadvantages of LDCT screening and related open questions are systematically discussed. A possible reduction of lung cancer specific and total mortality must be weighed against false positive results, overdiagnoses, and radiation exposure. In NLST, the proportion of overdiagnoses is estimated to be 11.0 to 18.5%, depending on the strategy of analysis; radiation exposure is about 1.5 mSv per scan, and thus much lower than radiation exposure in chest X‑ray, which is about 8 mSv per scan. Open questions refer to who should be offered the screening, how long the time intervals between screening rounds should be, and which algorithms should be used to clarify screen-detected nodules.

This is a preview of subscription content, log in to check access.

Literatur

  1. 1.

    Finigan JH, Kern JA (2013) Lung cancer screening: past, present and future. Clin Chest Med 34:365–371

    Article  Google Scholar 

  2. 2.

    Henschke CI, McCauley DI, Yankelevitz DF et al (1999) Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet 354:99–105

    CAS  Article  Google Scholar 

  3. 3.

    National Lung Screening Trial Research Team (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365:395–409

    Article  Google Scholar 

  4. 4.

    Infante M, Cavuto S, Lutman FR et al (2015) Long-term follow-up results of the DANTE Trial, a randomized study of lung cancer screening with spiral computed tomography. Am J Respir Crit Care Med 191:1166–1175

    Article  Google Scholar 

  5. 5.

    Saghir Z, Dirksen A, Ashraf H et al (2012) CT screening for lung cancer brings forward early disease. The randomized Danish Lung Cancer Screening Trial: status after five annual screening rounds with low-dose CT. Thorax 67:296–301

    Article  Google Scholar 

  6. 6.

    Stang A, Schuler M, Kowall B, Darwiche K, Kühl H, Jöckel KH (2015) Lung cancer screening using low dose CT scanning in Germany – extrapolation of results from the National Lung Screening Trial. Dtsch Arztebl Int 112:637–644

    PubMed  Google Scholar 

  7. 7.

    Pinsky PF, Church TR, Izmirlian G, Kramer BS (2013) The National Lung Screening Trial: results stratified by demographics, smoking history and lung cancer histology. Cancer 119:3976–3983

    Article  Google Scholar 

  8. 8.

    Grannis FW (2014) National Lung Screening Trial limitations and public health policy. Oncology 28:956–963

    PubMed  Google Scholar 

  9. 9.

    Becker N, Motsch E, Gross ML et al (2015) Randomized study on early detection of lung cancer with MSCT in Germany. Results of the first 3 years of follow-up after randomization. J Thorac Oncol 10:890–896

    CAS  Article  Google Scholar 

  10. 10.

    Tammemägi MC, Berg CD, Riley TL, Cunningham CR, Taylor KL (2014) Impact of lung cancer screening results on smoking cessation. J Natl Cancer Inst. https://doi.org/10.1093/jnci/dju084

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Stang A, Kowall B, Schuler M, Jöckel KH (2016) Früherkennung von Lungenkrebs. Low-dose-Computertomographie-Screening. Onkologe 22:568–577

    Article  Google Scholar 

  12. 12.

    Horeweg N, van Rosmalen J, Heuvelmans MA et al (2014) Lung cancer probability in patients with CT-detected pulmonary nodules: a prespecified analysis of data from the NELSON trial of low-dose CT screening. Lancet Oncol 15:1332–1341

    Article  Google Scholar 

  13. 13.

    Oudkerk M, Devaraj A, Vliegenhart R et al (2017) European position statement on lung cancer screening. Lancet Oncol 18:e754–e766

    Article  Google Scholar 

  14. 14.

    Patz EF, Pinsky P, Gatsonis C et al (2014) Overdiagnosis in low-lose computed tomography screening for lung cancer. JAMA Intern Med 174:269–274

    Article  Google Scholar 

  15. 15.

    Veronesi G, Maisonneuve P, Bellomi M et al (2012) Estimating overdiagnosis in low-dose computed tomography screening for lung cancer: a cohort study. Ann Intern Med 157:776–784

    Article  Google Scholar 

  16. 16.

    Jacobs CD, Jafari ME (2017) Early results of lung cancer screening and radiation dose assessment by low-dose CT at a community hospital. Clin Lung Cancer 18:e327–e331

    Article  Google Scholar 

  17. 17.

    Young S, Lo P, Kim G et al (2017) The effect of radiation dose reduction on computer-aided detection (CAD) performance in a low-dose lung cancer screening population. Med Phys 44:1337–1346

    CAS  Article  Google Scholar 

  18. 18.

    Berrington de González A, Kim PK, Berg CD (2008) Low-dose lung CT screening before age 55: estimates of the mortality reduction required to outweigh the radiation-induced cancer risk. J Med Screen 15:153–158

    Article  Google Scholar 

  19. 19.

    Bach PB, Mirkin JN, Oliver TK et al (2012) Benefits and harms of CT screening for lung cancer: a systematic review. JAMA 307:2418–2429

    CAS  Article  Google Scholar 

  20. 20.

    Tanner NT, Kanodra NM, Gebregziabher M et al (2016) The association between smoking abstinence and mortality in the National Lung Screening Trial. Am J Respir Crit Care Med 193:534–541

    CAS  Article  Google Scholar 

  21. 21.

    Cromwell J, Bartosch WJ, Fiore MC, Hasselblad V, Baker T (1997) Cost-effectiveness of the clinical practice recommendations in the AHCPR guideline for smoking cessation. JAMA 278:1759–1766

    CAS  Article  Google Scholar 

  22. 22.

    Black WC, Gareen IF, Soneji SS et al (2014) Cost-effectiveness of CT screening in the National Lung Screening Trial. N Engl J Med 371:1793–1802

    CAS  Article  Google Scholar 

  23. 23.

    Van der Aalst CM, de Koning HJ, van den Bergh KAM, Willemsen MC, van Klaveren RJ (2012) The effectiveness of a computer-tailored smoking cessation intervention for participants in lung cancer screening: a randomized controlled trial. Cancer Treat Res 76:204–210

    Google Scholar 

  24. 24.

    Kovalchik SA, Tammemägi M, Berg CD et al (2013) Targeting of low-dose CT screening according to the risk of lung-cancer death. N Engl J Med 369:245–254

    CAS  Article  Google Scholar 

  25. 25.

    Tammemägi MC, Katki HA, Hocking WG et al (2013) Selection criteria for lung-cancer screening. N Engl J Med 368:728–736

    Article  Google Scholar 

  26. 26.

    ten Haaf K, Jeon J, Tammemägi MC et al (2017) Risk prediction models for selection of lung cancer screening candidates: a retrospective validation study. PLoS Med 14:e1002277

    Article  Google Scholar 

  27. 27.

    Yousuf-Khan U, van der Aalst C, de Jong PA et al (2017) Final screening round of the NELSON lung cancer screening trial: the effect of a 2.5-year screening interval. Thorax 72:48–56

    Article  Google Scholar 

  28. 28.

    Sverzellati N, Silva M, Calareso G et al (2016) Low-dose computed tomography for lung cancer screening: comparison of performance between annual and biennial screen. Eur Radiol 26:3821–3829

    Article  Google Scholar 

  29. 29.

    de Koning HJ, Meza R, Plevritis SK et al (2014) Benefits and harms of computed tomography lung cancer screening strategies. A comparative modeling study for the U.S. Preventive Services Task Force. Ann Intern Med 160:311–320

    Article  Google Scholar 

  30. 30.

    Baldwin RB, Duffy SW, Devaraj A, Field JK (2017) Optimum low dose CT screening interval for lung cancer: the answer from NELSON? Thorax 72:6–7

    Article  Google Scholar 

  31. 31.

    Heuvelmans MA, Groen HJM, Oudkerk M (2017) Early lung cancer detection by low-dose CT screening: therapeutic implications. Expert Rev Respir Med 11:89–110

    CAS  Article  Google Scholar 

  32. 32.

    Herth FJF, Hoffmann H, Heussel CP, Biederer J, Gröschel A (2014) Lungenkrebs-Screening – Update 2014. Gemeinsame Stellungnahme der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin, der Deutschen Gesellschaft für Thoraxchirurgie und der Deutschen Röntgengesellschaft zur Lungenkrebsfrüherkennung mit Niedrigdosis-CT. Pneumologie 68:781–783

    CAS  Article  Google Scholar 

  33. 33.

    Leitlinienprogramm Onkologie (2018) S3-Leitlinie Lungenkarzinom. Langversion 1.0 (http://www.leitlinienprogramm-onkologie.de/fileadmin/user_upload/Downloads/Leitlinien/Lungenkarzinom/LL_Lungenkarzinom_Langversion_1.0.pdf)

    Google Scholar 

  34. 34.

    Mamdani H, Ahmed S, Armstrong S, Mok T, Jalal SI (2017) Blood-based tumor biomarkers in lung cancer for detection and treatment. Transl Lung Cancer Res 6:648–660

    CAS  Article  Google Scholar 

  35. 35.

    Dahl E (2016) Liquid Biopsy: Status 2016. Perspektiven der Onkologie. Dtsch Arztebl. https://doi.org/10.3238/PersOnko/2016.09.30.01

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to PD Dr. Dr. Bernd Kowall.

Ethics declarations

Interessenkonflikt

B. Kowall, K.-H. Jöckel und A. Stang geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kowall, B., Jöckel, K. & Stang, A. Lungenkrebsscreening: Aktuelle Entwicklungen. Bundesgesundheitsbl 61, 1551–1558 (2018). https://doi.org/10.1007/s00103-018-2834-8

Download citation

Schlüsselwörter

  • Falsch-positive Befunde
  • Low-Dose-Computertomographie
  • Krebsfrüherkennung
  • Strahlenbelastung
  • Überdiagnosen

Keywords

  • False-positive results
  • Low-dose computed tomography
  • Early detection of cancer
  • Radiation exposure
  • Overdiagnoses