Advertisement

Übertragungswege resistenter Bakterien zwischen Tieren und Menschen und deren Bedeutung – Antibiotikaresistenz im One-Health-Kontext

  • Bernd-Alois Tenhagen
  • Nicole Werner
  • Annemarie Käsbohrer
  • Lothar Kreienbrock
Leitthema
  • 660 Downloads

Zusammenfassung

Menschen und Tiere leben in einer gemeinsamen Umwelt und Antibiotika werden bei beiden eingesetzt. Daher ist das Thema Antibiotikaresistenz ein wichtiges gemeinsames Thema für Human- und Veterinärmedizin. Die Frage, welche Bedeutung der Antibiotikaeinsatz bei Tieren für die Resistenzsituation beim Menschen hat, steht dabei häufig im Mittelpunkt der Diskussionen. Im vorliegenden Beitrag werden die Übertragungswege resistenter Bakterien zwischen Tieren und Menschen erläutert und anschließend die Frage adressiert, ob die Verminderung des Antibiotikaeinsatzes in der Tierhaltung auch zu einer Verbesserung der Resistenzsituation beim Menschen beiträgt.

Als wesentliche Übertragungswege werden 1) der Kontakt zwischen Mensch und Tier, 2) die Übertragung von Bakterien über Lebensmittel und 3) die indirekte Übertragung über Emissionen in die Umwelt und die nachfolgende Exposition des Menschen über die Umwelt vorgestellt. Dabei ist festzustellen, dass sich die Bedeutung dieser Übertragungswege zwischen den Bakterienspezies deutlich unterscheidet. Zudem ist es trotz umfangreicher Untersuchungen bisher nicht möglich, die jeweilige Bedeutung der Übertragungswege und der übertragenen Bakterien für die Resistenzsituation beim Menschen exakt zu quantifizieren. Als gesichert gilt, dass der Einsatz von Antibiotika in der Tierhaltung die Ausbreitung resistenter Organismen in der Tierhaltung fördert. Neuere Studien deuten auch darauf hin, dass es eine Beziehung zwischen dem Einsatz von Antibiotika in der Tierhaltung und dem Auftreten von Resistenzen in der Humanpopulation gibt. Diese Beziehung ist jedoch komplex, und für das bessere Verständnis dieser Beziehung und der Bedeutung der verschiedenen Übertragungswege sind weitere gemeinsame Studien im veterinär- und humanmedizinischen Bereich erforderlich.

Schlüsselwörter

Antibiotikaresistenz Antibiotikaeinsatz Zoonosen Übertragungswege Lebensmittel 

Transmission pathways for resistant bacteria between animals and humans: antibiotics resistance in the One Health context

Abstract

People and animals share the same environment and antibiotics are used in both. Thus, antibiotics resistance is a major common issue for human and veterinary medicine. The potential impact of antibiotics use in animals on resistance in humans is frequently the focus of debate. In this paper the transmission pathways of resistant bacteria between animals and humans are described and the question is addressed whether a reduction in antibiotics use in animals contributes to the improvement of the resistance situation in humans. Direct contact between humans and animals, transmission of bacteria via food, and indirect transmission via emissions in the environment and the subsequent exposure of humans via the environment are the major transmission routes to be considered. It can thus be established that the relevance of these various transmission routes varies significantly among bacterial species. Furthermore, despite numerous investigations, the exact significance of transmission pathways and the bacteria transferred for the resistance situation in humans cannot yet be precisely quantified. There is evidence that antibiotics use in animals fosters the spread of resistant organisms in animals. Recent studies also suggest that there might be a relationship between antibiotics use in animals and the occurrence of resistance in humans. However, this relationship is complex, and for a better understanding of it and the role of the various transmission pathways, further collaborative studies between veterinary and medical science are needed.

Keywords

Antibiotics resistance Antibiotics use Zoonoses Transmission pathways Food 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

B.-A. Tenhagen, N. Werner, A. Käsbohrer und L. Kreienbrock geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Winkle S (1997) Geißeln der Menschheit – Kulturgeschichte der Seuchen. Artemis und Winkler, Düsseldorf, ZürichGoogle Scholar
  2. 2.
    EFSA (2016) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J 14:4634Google Scholar
  3. 3.
    Bundestierärztekammer (2015) Leitlinien für den sorgfältigen Umgang mit antibakteriell wirksamen Tierarzneimitteln – mit Erläuterungen. Bundestierärztekammer, BerlinGoogle Scholar
  4. 4.
    Bundesministerium für Gesundheit, Bundesministerium Für Ernährung und Landwirtschaft, Bundesministerium für Bildung und Forschung (2015) DART 2020 – Antibiotika-Resistenzen bekämpfen zum Wohl von Mensch und Tier. Bundesministerium für Gesundheit, BerlinGoogle Scholar
  5. 5.
    RKI (2017) Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2016. Robert Koch-Institut, BerlinGoogle Scholar
  6. 6.
    EFSA (2017) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J 15:5077Google Scholar
  7. 7.
    Manten A (1963) The non-medical use of antibiotics and the risk of causing microbial drug resistance. Bull World Health Organ 29:387–400PubMedPubMedCentralGoogle Scholar
  8. 8.
    EFSA (2012) Technical specifications on the harmonised monitoring and reporting of antimicrobial resistance in methicillin-resistant Staphylococcus aureus in food-producing animals and food. EFSA J 10(10):2897CrossRefGoogle Scholar
  9. 9.
    EFSA (2012) Technical specifications on the harmonised monitoring and reporting of antimicrobial resistance in Salmonella, Campylobacter and indicator Escherichia coli and Enterococcus spp. bacteria transmitted through food. EFSA J 10:2742Google Scholar
  10. 10.
    Mather AE, Matthews L, Mellor DJ et al (2012) The diversity of antimicrobial resistance is different in Salmonella Typhimurium DT104 from co-located animals and humans. Proc R Soc Lond, B, Biol Sci 279:2924–2925CrossRefGoogle Scholar
  11. 11.
    Price LB, Stegger M, Hasman H et al (2012) Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio 3(1):e305–e311.  https://doi.org/10.1128/mBio.00305-11 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Köck R, Ballhausen B, Bischoff M et al (2014) The impact of zoonotic MRSA colonization and infection in Germany. Berl Münch Tierärztl Wochenschr 127:384–398PubMedGoogle Scholar
  13. 13.
    Grontvedt CA, Elstrom P, Stegger M et al (2016) Methicillin-Resistant Staphylococcus aureus CC398 in humans and pigs in Norway: a “One Health” perspective on introduction and transmission. Clin Infect Dis 63:1431–1438CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Walther B, Hermes J, Cuny C et al (2012) Sharing more than friendship—nasal colonization with coagulase-positive staphylococci (CPS) and co-habitation aspects of dogs and their owners. PLoS ONE 7:e35197CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Guenther S, Grobbel M, Beutlich J et al (2010) Detection of pandemic B2-O25-ST131 Escherichia coli harbouring the CTX-M-9 extended-spectrum beta-lactamase type in a feral urban brown rat (Rattus norvegicus). J Antimicrob Chemother 65:582–584CrossRefPubMedGoogle Scholar
  16. 16.
    Bisdorff B, Scholholter J, Clauáen K, Pulz M, Nowak D, Radon K (2012) MRSA-ST398 in livestock farmers and neighbouring residents in a rural area in Germany. Epidemiol Infect 140:1800–1808CrossRefPubMedGoogle Scholar
  17. 17.
    Reynaga E, Navarro M, Vilamala A et al (2016) Prevalence of colonization by methicillin-resistant Staphylococcus aureus ST398 in pigs and pig farm workers in an area of Catalonia, Spain. Bmc Infect Dis 16:716CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Spohr M, Rau J, Friedrich A et al (2011) Methicillin-Resistant Staphylococcus aureus (MRSA) in three dairy herds in southwest Germany. Zoonoses Public Health 58:252–261CrossRefPubMedGoogle Scholar
  19. 19.
    Graveland H, Wagenaar JA, Heesterbeek H, Mevius D, Van Duijkeren E, Heederik D (2010) Methicillin resistant Staphylococcus aureus ST398 in veal calf farming: human MRSA carriage related with animal antimicrobial usage and farm hygiene. PLoS One 5:e10990CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Richter A, Sting R, Popp C et al (2012) Prevalence of types of methicillin-resistant Staphylococcus aureus in turkey flocks and personnel attending the animals. Epidemiol Infect 140:2223–2232CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mulders MN, Haenen AP, Geenen PL et al (2010) Prevalence of livestock-associated MRSA in broiler flocks and risk factors for slaughterhouse personnel in the Netherlands. Epidemiol Infect 138:743–755CrossRefPubMedGoogle Scholar
  22. 22.
    Cuny C, Strommenger B, Witte W, Stanek C (2008) Clusters of infections in horses with MRSA ST1, ST254, and ST398 in a veterinary hospital. Microb Drug Resist 14:307–310CrossRefPubMedGoogle Scholar
  23. 23.
    Van Cleef BA, Broens EM, Voss A et al (2010) High prevalence of nasal MRSA carriage in slaughterhouse workers in contact with live pigs in the Netherlands. Epidemiol Infect 138:756–763CrossRefPubMedGoogle Scholar
  24. 24.
    Wendlandt S, Kadlec K, Fessler AT et al (2013) Resistance phenotypes and genotypes of methicillin-resistant Staphylococcus aureus isolates from broiler chickens at slaughter and abattoir workers. J Antimicrob Chemother 68:2458–2463CrossRefPubMedGoogle Scholar
  25. 25.
    Van Den Broek IV, Van Cleef BA, Haenen A et al (2009) Methicillin-resistant Staphylococcus aureus in people living and workIng in pig farms. Epidemiol Infect 137:700–708CrossRefGoogle Scholar
  26. 26.
    Van Den Bogaard AE, London N, Driessen C, Stobberingh EE (2001) Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother 47:763–771CrossRefPubMedGoogle Scholar
  27. 27.
    Van Den Bogaard AE, Stobberingh EE (2000) Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents 14:327–335CrossRefPubMedGoogle Scholar
  28. 28.
    Van Den Bogaard AE, Willems R, London N, Top J, Stobberingh EE (2002) Antibiotic resistance of faecal enterococci in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother 49:497–505CrossRefPubMedGoogle Scholar
  29. 29.
    Dohmen W, Van Gompel L, Schmitt H et al (2017) ESBL carriage in pig slaughterhouse workers is associated with occupational exposure. Epidemiol Infect 145:2003–2010CrossRefPubMedGoogle Scholar
  30. 30.
    Dohmen W, Bonten MJ, Bos ME et al (2015) Carriage of extended-spectrum beta-lactamases in pig farmers is associated with occurrence in pigs. Clin Microbiol Infect 21:917–923CrossRefPubMedGoogle Scholar
  31. 31.
    Dierikx C, Van Der Goot J, Fabri T, Van Essen-Zandbergen A, Smith H, Mevius D (2013) Extended-spectrum-beta-lactamase- and AmpC-beta-lactamase-producing Escherichia coli in Dutch broilers and broiler farmers. J Antimicrob Chemother 68:60–67CrossRefPubMedGoogle Scholar
  32. 32.
    Fischer J, Hille K, Ruddat I, Mellmann A, Kock R, Kreienbrock L (2017) Simultaneous occurrence of MRSA and ESBL-producing enterobacteriaceae on pig farms and in nasal and stool samples from farmers. Vet Microbiol 200:107–113CrossRefPubMedGoogle Scholar
  33. 33.
    Schmidt A (2006) Vergleichende Darstellung unterschiedlicher Qualitätsmanagementsysteme in der Fleischwirtschaft unter besonderer Berücksichtigung der Effizienz und Praktikabilität. Tierärztliche Fakultät. Ludwig-Maximilians Universität, München, S 198Google Scholar
  34. 34.
    Sattelmair H (2005) Die Tuberkulose des Rindes – ein Beitrag zur Geschichte der Haustierkrankheiten. Fachbereich Veterinärmedizin. Freie Universität, BerlinGoogle Scholar
  35. 35.
    Rasch G, Schöneberg I, Apitzsch L, Menzel U (1997) Brucellose-Erkrankungen in Deutschland. Bundesgesundheitsblatt 1997:50–54CrossRefGoogle Scholar
  36. 36.
    EFSA, ECDC (2015) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J 13(12):4329Google Scholar
  37. 37.
    Vossenkuhl B, Brandt J, Fetsch A et al (2014) Comparison of spa types, SCCmec types and antimicrobial resistance profiles of MRSA isolated from turkeys at farm, slaughter and from retail meat indicates transmission along the production chain. PLoS ONE 9:e96308CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Snary EL, Swart AN, Simons RR et al (2016) A quantitative microbiological risk assessment for Salmonella in pigs for the European Union. Risk Anal 36:437–449CrossRefPubMedGoogle Scholar
  39. 39.
    Fetsch A, Tenhagen BA, Leeser D et al (2015) High risk of cross-contamination with ESBL E. coli and MRSA during handling with contaminated fresh chicken meat in household kitchens. In: 4th ASM conference on Antimicrobial Resistance in Zoonotic Bacteria and Foodborne Pathogens. American Society for Microbiology, Washington D.C.Google Scholar
  40. 40.
    Siffczyk C, Smuskiewicz M, Weise K et al (2017) The largest Campylobacter coli outbreak in Germany, associated with minced meat consumption, May 2016. National Symposium on Zoonoses Research 2017, BerlinGoogle Scholar
  41. 41.
    Tenhagen B‑A, Alt K, Fetsch A, Kraushaar B, Käsbohrer A (2011) Methicillin-resistente Staphylococcus aureus-Monitoringprogramme. In: Hartung M, Käsbohrer A (Hrsg) Erreger von Zoonosen in Deutschland im Jahr 2009. Bundesinstitut für Risikobewertung, Berlin, S 47–52Google Scholar
  42. 42.
    Käsbohrer A, Alt K, Schroeter A, Dorn C, Tenhagen BA (2011) Salmonella-Monitoringprogramme. In: Hartung M, Käsbohrer A (Hrsg) Erreger von Zoonosen in Deutschland 2009. Bundesinstitut für Risikobewertung, Berlin, S 32–37Google Scholar
  43. 43.
    Fetsch A, Kraushaar B, Käsbohrer A, Hammerl JA (2017) Turkey meat as source of CC9/CC398 Methicillin-resistant Staphylococcus aureus in humans? Clin Infect Dis 64:102–103CrossRefPubMedGoogle Scholar
  44. 44.
    Pires S, De Kneght L, Hald T (2011) Estimation of the relative contribution of different food and animal sources to human Salmonella infections in the European Union. http://www.EFSA.europa.eu/en/supporting/pub/en-184. Zugegriffen: 15.11.2017Google Scholar
  45. 45.
    EFSA (2010) Scientific opinion on quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. EFSA J 8(1):1437.  https://doi.org/10.2903/j.efsa.2010.1437 CrossRefGoogle Scholar
  46. 46.
    Sharp H, Valentin L, Fischer J, Guerra B, Appel B, Käsbohrer A (2014) Abschätzung des Transfers von ESBL-bildenden Escherichia coli zum Menschen für Deutschland. Berl Münch Tierärztl Wochenschr 127:463–476Google Scholar
  47. 47.
    Valentin L, Sharp H, Hille K et al (2014) Subgrouping of ESBL-producing Escherichia coli from animal and human sources: an approach to quantify the distribution of ESBL types between different reservoirs. Int J Med Microbiol 304:805–816CrossRefPubMedGoogle Scholar
  48. 48.
    Friese A, Schulz J, Hoehle L et al (2012) Occurrence of MRSA in air and housing environment of pig barns. Vet Microbiol 158:129–135CrossRefPubMedGoogle Scholar
  49. 49.
    Laube H, Friese A, Von Salviati C, Guerra B, Rosler U (2014) Transmission of ESBL/AmpC-producing Escherichia coli from broiler chicken farms to surrounding areas. Vet Microbiol 172:519–527CrossRefPubMedGoogle Scholar
  50. 50.
    Von Salviati C, Laube H, Guerra B, Roesler U, Friese A (2015) Emission of ESBL/AmpC-producing Escherichia coli from pig fattening farms to surrounding areas. Vet Microbiol 175:77–84CrossRefGoogle Scholar
  51. 51.
    Guenther S, Falgenhauer L, Semmler T et al (2017) Environmental emission of multiresistant Escherichia coli carrying the colistin resistance gene mcr-1 from German swine farms. J Antimicrob Chemother 72:1289–1292CrossRefPubMedGoogle Scholar
  52. 52.
    Jia S, He X, Bu Y et al (2014) Environmental fate of tetracycline resistance genes originating from swine feedlots in river water. J Environ Sci Health B 49:624–631CrossRefPubMedGoogle Scholar
  53. 53.
    Dohmen W, Schmitt H, Bonten M, Heederik D (2017) Air exposure as a possible route for ESBL in pig farmers. Environ Res 155:359–364CrossRefPubMedGoogle Scholar
  54. 54.
    Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (2017) Berichte zur Lebensmittelsicherheit – Zoonosen-Monitoring 2016. BVL, Berlin, S 77 (www.BVL.bund.de)Google Scholar
  55. 55.
    Valenza G, Nickel S, Pfeifer Y et al (2014) Extended-spectrum-beta-lactamase-producing Escherichia coli as intestinal colonizers in the German community. Antimicrob Agents Chemother 58:1228–1230CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Meyer C, Heurich M, Huber I, Krause G, Ullrich U, Fetsch A (2014) The importance of wildlife as reservoir of antibiotic-resistant bacteria in Bavaria—first results. Berl Munch Tierarztl Wochenschr 127:129–134PubMedGoogle Scholar
  57. 57.
    Fromm S, Beisswanger E, Kasbohrer A, Tenhagen BA (2014) Risk factors for MRSA in fattening pig herds—a meta-analysis using pooled data. Prev Vet Med 117:180–188CrossRefPubMedGoogle Scholar
  58. 58.
    Hogerwerf L, Borlee F, Still K et al (2012) Detection of Coxiella burnetii DNA in inhalable airborne dust samples from goat farms after mandatory culling. Appl Environ Microbiol 78:5410–5412CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kersh GJ, Fitzpatrick KA, Self JS et al (2013) Presence and persistence of Coxiella burnetii in the environments of goat farms associated with a Q fever outbreak. Appl Environ Microbiol 79:1697–1703CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Van Der Hoek W, Meekelenkamp JC, Dijkstra F et al (2011) Proximity to goat farms and Coxiella burnetii seroprevalence among pregnant women. Emerging Infect Dis 17:2360–2363CrossRefGoogle Scholar
  61. 61.
    Noll I, Schweickert B, Tenhagen B‑A, Käsbohrer A (2018) Antibiotikaverbrauch und Antibiotikaresistenz in der Human- und Veterinärmedizin. Überblick über die etablierten nationalen Surveillance-Systeme. Bundesgesundheitsblatt.  https://doi.org/10.1007/s00103-018-2724-0 Google Scholar
  62. 62.
    Burow E, Simoneit C, Tenhagen BA, Kasbohrer A (2014) Oral antimicrobials increase antimicrobial resistance in porcine E. coli—a systematic review. Prev Vet Med 113:364–375CrossRefPubMedGoogle Scholar
  63. 63.
    Burow E, Kasbohrer A (2017) Risk factors for antimicrobial resistance in Escherichia coli in pigs receiving oral antimicrobial treatment: a systematic review. Microb Drug Resist 23:194–205CrossRefPubMedGoogle Scholar
  64. 64.
    Simoneit C, Burow E, Tenhagen BA, Kasbohrer A (2015) Oral administration of antimicrobials increase antimicrobial resistance in E. coli from chicken—a systematic review. Prev Vet Med 118:1–7CrossRefPubMedGoogle Scholar
  65. 65.
    EMA, EFSA (2017) EMA and EFSA joint scientific opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J 15:4666Google Scholar
  66. 66.
    Dorado-Garcia A, Mevius DJ, Jacobs JJ et al (2016) Quantitative assessment of antimicrobial resistance in livestock during the course of a nationwide antimicrobial use reduction in the Netherlands. J Antimicrob Chemother 71:3607–3619CrossRefPubMedGoogle Scholar
  67. 67.
    Käsbohrer A (2018) Resistenzentwicklung beim Mastgeflügel – zeigt die Reduktionsstrategie eine Wirkung? Leipz Blaue Hefte (im Druck)Google Scholar
  68. 68.
    ECDC, EFSA, EMA (2017) ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report. EFSA J 15:4872Google Scholar
  69. 69.
    World Health Organisation (2017) Integrated surveillance of antimicrobial resistance in foodborne bacteria. Application of a One Health approach. WHO, GenfGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Bernd-Alois Tenhagen
    • 1
  • Nicole Werner
    • 2
  • Annemarie Käsbohrer
    • 1
    • 3
  • Lothar Kreienbrock
    • 2
  1. 1.Fachgruppe Epidemiologie, Zoonosen und AntibiotikaresistenzBundesinstitut für RisikobewertungBerlinDeutschland
  2. 2.Institut für Biometrie, Epidemiologie und Informationsverarbeitung, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment InterfaceTierärztliche Hochschule HannoverHannoverDeutschland
  3. 3.Institut für Öffentliches VeterinärwesenVeterinärmedizinische Universität WienWienÖsterreich

Personalised recommendations