Skip to main content

Advertisement

Log in

Endokrine Modulatoren

Hinweise aus epidemiologischen Studien bedürfen einer kritischen Überprüfung in Modellsystemen

Endocrine disruptors

Evidence from epidemiological studies necessitates a critical review of model systems

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Endokrin disruptive Chemikalien (EDC) verursachen durch Interaktion mit hormonellen Systemen negative gesundheitliche Effekte. Sie werden nach chemischer Struktur, Wirkung auf bestimmte Hormonsysteme, Bioakkumulation, Persistenz in der Umwelt oder klinisch beobachtbarer Auswirkung klassifiziert. Zur Erforschung der komplexen Wirkungsweise im Menschen stehen bislang nur unzureichende In-vitro-Modellsysteme zur Verfügung, die zudem nicht ausreichend hochdurchsatzfähig sind, wodurch sich die Risikoevaluation ausgesprochen schwierig gestaltet. Hinzu kommt, dass in den Industrienationen lebende Menschen meist gegenüber EDC-Substanzgemischen mit unterschiedlichen Wirkungsweisen exponiert sind. Derzeit unklar ist die klinische Bedeutung der durch EDC in vulnerablen Entwicklungsphasen ausgelösten epigenetischen Veränderungen. Epidemiologische Studien werden aufgrund ihrer nicht immer garantierten Reproduzierbarkeit kritisiert, dennoch bleiben sie zur Entwicklung und Prüfung von Hypothesen zur Wirkungsweise von EDC im klinischen Kontext wegen fehlender geeigneter Modellsysteme die Methode der Wahl. Positive Hinweise auf Assoziationen sind trotz zuweilen widersprüchlicher Ergebnisse der entscheidende Schlüssel zur Selektion von Faktoren, die anschließend in Modellsystemen ergebnisoffen überprüft werden können. Dieser Beitrag stellt hauptsächlich die positive epidemiologische Evidenz der durch EDC ausgelösten Effekte in den Bereichen Wachstum und Metabolismus, neurokognitive Entwicklung sowie Sexualentwicklung und Reproduktion dar. Daraus ergibt sich die Notwendigkeit einer engen Verknüpfung von epidemiologischer und mechanistischer Forschung in Modellsystemen, insbesondere auf den Gebieten des Zusammenwirkens verschiedener EDC und der Auswirkungen pränataler und frühkindlicher Exposition.

Abstract

Endocrine disruptive chemicals (EDCs) cause adverse health effects through interaction with endocrine systems. They are classified by chemical structure, effects on specific endocrine systems, bioaccumulation, persistence in the environment, or clinically observable effects. For research of the complex mechanisms of action in the human body, only in vitro model systems have so far been available, that have insufficient high-throughput capacity, which makes risk evaluation more difficult. In addition, in industrial nations, living people are often exposed to mixtures of substances, with various effects. The clinical importance of epigenetic changes caused by the action of EDCs during vulnerable phases of development is currently unclear. Epidemiological studies are criticized because reproducibility is not always guaranteed. Nevertheless, they remain the method of choice for the development and analysis of suitable model systems. Positive associations, in spite of sometimes conflicting results, are key in the selection of factors that can then be analysed in model systems in an unbiased way. This article depicts the mainly positive epidemiological findings for EDC-caused effects in the fields of growth and metabolism, neurocognitive development and sexual development and reproduction. As a result, there is a need for closer linkage between epidemiological studies and mechanistic research into model systems, especially focusing on the interaction of different EDCs and the consequences of prenatal and early life exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Abbreviations

BPA:

Bisphenol A

DDT:

Dichlorodiphenyltrichloroethan

EDC:

Endokrin disruptive Chemikalien

IPCS:

International Programme on Chemical Safety

OCP:

Chlororganische Pestizide

PAE:

Phthalsäureester

PAH:

Polyaromatische Kohlenwasserstoffe

PBDE:

Polybromierte Diphenylester

PCB:

Polychlorierte Biphenyle

PFOA:

Perfluoroctansäure

PFAS:

Polyfluorierte Alkylsubstanzen

PFOS:

Perfluoroctansulfonsäure

POP:

Persistente organische Schadstoffe

TCDD:

Tetrachlorodibenzodioxin

DOHaD:

Entwicklungstechnische Ursprünge von Gesundheit und Krankheit

Literatur

  1. Bergman A et al (2013) State of the science of endocrine disrupting chemicals – 2012. Toxicol Lett 211:S3. doi:10.1016/j.toxlet.2012.03.020

    Article  Google Scholar 

  2. Fent K (2013) Ökotoxikologie – Umweltchemie – Toxikologie –Ökologie, 4. Aufl. Thieme, Stuttgart

    Google Scholar 

  3. Kohrle J (2008) Environment and endocrinology: the case of thyroidology. Ann Endocrinol (Paris) 69(2):116–122

    Article  CAS  Google Scholar 

  4. Yoon K et al (2014) Estrogenic endocrine-disrupting chemicals: molecular mechanisms of actions on putative human diseases. J Toxicol Environ Health B Crit Rev 17(3):127–174

    Article  CAS  PubMed  Google Scholar 

  5. Grimaldi M et al (2015) Reporter cell lines for the characterization of the interactions between human nuclear receptors and endocrine disruptors. Front Endocrinol (Lausanne) 6:62

    Google Scholar 

  6. Grun F, Blumberg B (2006) Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 147(6 Suppl):S50–S55

    Article  CAS  PubMed  Google Scholar 

  7. Rogers JA, Metz L, Yong VW (2013) Review: endocrine disrupting chemicals and immune responses: a focus on bisphenol-A and its potential mechanisms. Mol Immunol 53(4):421–430

    Article  CAS  PubMed  Google Scholar 

  8. Mulero-Navarro S, Fernandez-Salguero PM (2016) New trends in aryl hydrocarbon receptor biology. Front Cell Dev Biol 4:45

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kubota A et al (2015) Role of pregnane X receptor and aryl hydrocarbon receptor in transcriptional regulation of pxr, CYP2, and CYP3 genes in developing zebrafish. Toxicol Sci 143(2):398–407

    Article  CAS  PubMed  Google Scholar 

  10. Polanska K et al (2014) Effect of prenatal polycyclic aromatic hydrocarbons exposure on birth outcomes: the Polish mother and child cohort study. Biomed Res Int:. doi:10.1155/2014/408939

    PubMed  PubMed Central  Google Scholar 

  11. Habert R et al (2014) Concerns about the widespread use of rodent models for human risk assessments of endocrine disruptors. Reproduction 147(4):R119–R129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wormuth M et al (2006) What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal 26(3):803–824

    Article  PubMed  Google Scholar 

  13. Casati L et al (2015) Endocrine disrupters: the new players able to affect the epigenome. Front Cell Dev Biol 5(3):37

    Google Scholar 

  14. Siddiqi MA, Laessig RH, Reed KD (2003) Polybrominated diphenyl ethers (PBDEs): new pollutants-old diseases. Clin Med Res 1(4):281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gebbink WA, Glynn A, Berger U (2015) Temporal changes (1997–2012) of perfluoroalkyl acids and selected precursors (including isomers) in Swedish human serum. Environ Pollut 199:166–173

    Article  CAS  PubMed  Google Scholar 

  16. Seidel A, Steinberg P, Appel K (2013) Kohlenwasserstoffe. In: Marquardt H, Schäfer SG, Barth H (Hrsg) Toxikologie. Wissenschaftliche Verlagsgesellschaft Stuttgart, Stuttgart, S 593–661

    Google Scholar 

  17. Abraham K, Schrenk D, Wölffle D (2013) Polychlorierte Dioxine, Furane und Biphenyle. In: Marquardt H, Schäfer SG, Barth H (Hrsg) Toxikologie. Wissenschaftliche Verlagsgesellschaft Stuttgart, Stuttgart, S 667–695

    Google Scholar 

  18. Swanson JM et al (2009) Developmental origins of health and disease: environmental exposures. Semin Reprod Med 27(5):391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DiVall SA (2013) The influence of endocrine disruptors on growth and development of children. Curr Opin Endocrinol Diabetes Obes 20(1):50–55

    Article  CAS  PubMed  Google Scholar 

  20. Bach CC et al (2015) Perfluoroalkyl and polyfluoroalkyl substances and human fetal growth: a systematic review. Crit Rev Toxicol 45(1):53–67

    Article  CAS  PubMed  Google Scholar 

  21. Tsai MS et al (2013) Neonatal outcomes of intrauterine nonylphenol exposure – a longitudinal cohort study in Taiwan. Sci Total Environ 458–460:367–373

    Article  PubMed  Google Scholar 

  22. Tang-Peronard JL et al (2011) Endocrine-disrupting chemicals and obesity development in humans: a review. Obes Rev 12(8):622–636

    Article  CAS  PubMed  Google Scholar 

  23. Kim SH, Park MJ (2014) Phthalate exposure and childhood obesity. Ann Pediatr Endocrinol Metab 19(2):69–75

    Article  PubMed  PubMed Central  Google Scholar 

  24. Scinicariello F, Buser MC (2014) Urinary polycyclic aromatic hydrocarbons and childhood obesity: NHANES (2001–2006). Environ Health Perspect 122(3):299–303

    PubMed  PubMed Central  Google Scholar 

  25. Legler J et al (2015) Obesity, diabetes, and associated costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab 100(4):1278–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Geiger SD et al (2014) The association between PFOA, PFOS and serum lipid levels in adolescents. Chemosphere 98:78–83

    Article  CAS  PubMed  Google Scholar 

  27. Kuo CC et al (2013) Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Curr Diab Rep 13(6):831–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang M et al (2014) Exposure to organochlorine pollutants and type 2 diabetes: a systematic review and meta-analysis. PLOS ONE 9(10):e85556

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gore AC et al (2015) EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev 36(6):E1–E150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chopra V et al (2014) Association between phthalates and attention deficit disorder and learning disability in U.S. children, 6–15 years. Environ Res 128:64–69

    Article  CAS  PubMed  Google Scholar 

  31. Abid Z et al (2014) Urinary polycyclic aromatic hydrocarbon metabolites and attention/deficit hyperactivity disorder, learning disability, and special education in U.S. children aged 6 to 15. J Environ Public Health:. doi:10.1155/2014/628508

    PubMed  PubMed Central  Google Scholar 

  32. Braun JM, Sathyanarayana S, Hauser R (2013) Phthalate exposure and children’s health. Curr Opin Pediatr 25(2):247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Polanska K, Jurewicz J, Hanke W (2013) Review of current evidence on the impact of pesticides, polychlorinated biphenyls and selected metals on attention deficit/hyperactivity disorder in children. Int J Occup Med Environ Health 26(1):16–38

    Article  PubMed  Google Scholar 

  34. Herbstman JB, Mall JK (2014) Developmental exposure to polybrominated diphenyl ethers and neurodevelopment. Curr Environ Health Rep 1(2):101–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boucher O, Muckle G, Bastien CH (2009) Prenatal exposure to polychlorinated biphenyls: a neuropsychologic analysis. Environ Health Perspect 117(1):7–16

    Article  CAS  PubMed  Google Scholar 

  36. Liew Z et al (2014) Prenatal exposure to perfluoroalkyl substances and the risk of congenital cerebral palsy in children. Am J Epidemiol 180(6):574–581

    Article  PubMed  Google Scholar 

  37. Quaak I et al (2016) Prenatal exposure to perfluoroalkyl substances and behavioral development in children. Int J Environ Res Public Health 13(5):511. doi:10.3390/ijerph13050511

    Article  PubMed Central  Google Scholar 

  38. Shanle EK, Xu W (2011) Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol 24(1):6–19

    Article  CAS  PubMed  Google Scholar 

  39. Bornehag CG et al (2015) Prenatal phthalate exposures and anogenital distance in Swedish boys. Environ Health Perspect 123(1):101–107

    CAS  PubMed  Google Scholar 

  40. Martino-Andrade AJ et al (2016) Timing of prenatal phthalate exposure in relation to genital endpoints in male newborns. Andrology 4(4):585–593

    Article  CAS  PubMed  Google Scholar 

  41. Virtanen HE, Adamsson A (2012) Cryptorchidism and endocrine disrupting chemicals. Mol Cell Endocrinol 355(2):208–220

    Article  CAS  PubMed  Google Scholar 

  42. Jacobson-Dickman E, Lee MM (2009) The influence of endocrine disruptors on pubertal timing. Curr Opin Endocrinol Diabetes Obes 16(1):25–30

    Article  CAS  PubMed  Google Scholar 

  43. Kristensen SL et al (2013) Long-term effects of prenatal exposure to perfluoroalkyl substances on female reproduction. Hum Reprod 28(12):3337–3348

    Article  CAS  PubMed  Google Scholar 

  44. Louis GM et al (2015) Perfluorochemicals and human semen quality: the LIFE study. Environ Health Perspect 123(1):57–63

    CAS  PubMed  Google Scholar 

  45. Li DK et al (2011) Urine bisphenol-A (BPA) level in relation to semen quality. Fertil Steril 95(2):625–630.e4

    Article  CAS  PubMed  Google Scholar 

  46. Meeker JD, Hauser R (2010) Exposure to polychlorinated biphenyls (PCBs) and male reproduction. Syst Biol Reprod Med 56(2):122–131

    Article  CAS  PubMed  Google Scholar 

  47. Darrow LA et al (2014) PFOA and PFOS serum levels and miscarriage risk. Epidemiology 25(4):505–512

    Article  PubMed  Google Scholar 

  48. Miao M et al (2015) Associations between bisphenol A exposure and reproductive hormones among female workers. Int J Environ Res Public Health 12(10):13240–13250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maisonet M et al (2015) Prenatal exposure to perfluoroalkyl acids and serum testosterone concentrations at 15 years of Age in female ALSPAC study participants. Environ Health Perspect 123(12):1325–1330

    Article  PubMed  PubMed Central  Google Scholar 

  50. Orjuela MA et al (2012) Urinary naphthol metabolites and chromosomal aberrations in 5‑year-old children. Cancer Epidemiol Biomarkers Prev 21(7):1191–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Al-Saleh I et al (2013) Polycyclic aromatic hydrocarbons (PAHs) as determinants of various anthropometric measures of birth outcome. Sci Total Environ 444:565–578

    Article  CAS  PubMed  Google Scholar 

  52. Faroon O, Ruiz P (2015) Polychlorinated biphenyls: new evidence from the last decade. Toxicol Ind Health 32(11):1825–1847. doi:10.1177/0748233715587849

    Article  Google Scholar 

  53. Eskenazi B et al (2009) The Pine River statement: human health consequences of DDT use. Environ Health Perspect 117(9):1359–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scheringer M et al (2014) Helsingor statement on poly- and perfluorinated alkyl substances (PFASs). Chemosphere 114:337–339

    Article  CAS  PubMed  Google Scholar 

  55. Berg V et al (2014) Maternal serum concentrations of per- and polyfluoroalkyl substances and their predictors in years with reduced production and use. Environ Int 69:58–66

    Article  CAS  PubMed  Google Scholar 

  56. Mondal D et al (2014) Breastfeeding: a potential excretion route for mothers and implications for infant exposure to perfluoroalkyl acids. Environ Health Perspect 122(2):187–192

    PubMed  Google Scholar 

  57. Bornehag CG et al (2005) Phthalates in indoor dust and their association with building characteristics. Environ Health Perspect 113(10):1399–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heudorf U, Mersch-Sundermann V, Angerer J (2007) Phthalates: toxicology and exposure. Int J Hyg Environ Health 210(5):623–634

    Article  CAS  PubMed  Google Scholar 

  59. vom Saal FS, Hughes C (2005) An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ Health Perspect 113(8):926–933

    Article  Google Scholar 

  60. Tang-Peronard JL et al (2015) Associations between exposure to persistent organic pollutants in childhood and overweight up to 12 years later in a low exposed Danish population. Obes Facts 8(4):282–292

    Article  CAS  PubMed  Google Scholar 

Download references

Förderung

Unsere wissenschaftliche Arbeit wird von der Europäischen Union im Rahmen des MixRisk-Konsortiums finanziell unterstützt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Kiess.

Ethics declarations

Interessenkonflikt

M. Hoffmann, S. Gebauer, M. Nüchter, R. Baber, J. Ried, M. von Bergen und W. Kiess geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, M., Gebauer, S., Nüchter, M. et al. Endokrine Modulatoren. Bundesgesundheitsbl 60, 640–648 (2017). https://doi.org/10.1007/s00103-017-2551-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-017-2551-8

Schlüsselwörter

Keywords

Navigation