Advertisement

Allergie – eine Umwelterkrankung!

  • Claudia Traidl-Hoffmann
Leitthema

Zusammenfassung

Die Zunahme von Allergien stellt ein Phänomen dar, das sich in allen – industriell gesehen– schnell sich entwickelnden Ländern beobachten lässt. Lange Zeit ging die Wissenschaft davon aus, dass allein eine genetische Prädisposition für die Entstehung einer Allergie notwendig sei. Heute ist man einen Schritt weiter, mit dem Wissen um Umweltfaktoren, welche die Gene bzw. das Abschreiben von Genen in den Zellen verändern können. Epidemiologische Studien haben inzwischen Umweltfaktoren identifiziert, die protektiv oder fördernd bei der Allergieentstehung wirken. Einen neu erkannten Umweltfaktor stellt das Mikrobiom dar – sowohl das Mikrobiom der Umwelt als auch des Darmes. Gemeinsames Thema vieler Studien ist die Diversität: Eine hohe Diversität des Mikrobioms korreliert mit einem geringeren Allergierisiko.

Die molekularen Grundlagen dieser beschreibenden Ergebnisse gilt es nun auf allen Ebenen weiter zu analysieren – vom Organ über die Zelle bis hin zu klein(st)molekularen Strukturen wie den Genen. Für Immunologen geht es im Speziellen darum, Einflussfaktoren und Wirkungswege der Allergene zu verstehen und die daraus gewonnen Erkenntnisse anschließend für das goldene Ziel der Allergieforschung anzuwenden – die Prävention.

Schlüsselwörter

Typ-I-Allergie Umwelt Epigenetik Adjuvanzien Pollen 

Allergy – an environmental disease

Abstract

The increase in allergies is a phenomenon that is being observed in all fast-developing countries. For a long time, science has taken as a starting point that solely a genetic predisposition is a precondition for the development of an allergy. Today, knowledge of environmental factors that can alter genes or the transcription of genes in the cells, has improved. Epidemiological studies have meanwhile identified several environmental factors that have a protective or supporting effect on allergy development. The environmental microbiome has recently gained central interest. A common theme in most of the studies is diversity: reduced diversity is correlated with enhanced risk for chronic inflammatory diseases and allergy.

It is now of great interest for research to further analyze such environment–gene and/or environment–human interactions on all levels – from organs to cells to small and microstructures such as genes. For immunologists, it is specifically about understanding the influencing factors and effector pathways of allergens, and to apply thereby obtained insights in the follow-up for the ultimate goal of allergy research – prevention.

Keywords

Type I allergy Environment Epigenetics Adjuvants Pollen 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Traidl-Hoffmann gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Bieber T, Akdis C, Lauener R et al (2016) Global allergy forum and 3rd Davos declaration 2015: atopic dermatitis/eczema: challenges and opportunities toward precision medicine. Allergy 71:588–592CrossRefPubMedGoogle Scholar
  2. 2.
    Chawes BL, Stokholm J, Schoos AM, Rahman N, Brix S, Bisgaard H (2016) Allergic sensitization at school age is a systemic low-grade inflammatory disorder. Allergy. doi: 10.1111/all.13108 Google Scholar
  3. 3.
    Ring J, Kramer U, Schafer T, Behrendt H (2001) Why are allergies increasing? Curr Opin Immunol 13:701–708CrossRefPubMedGoogle Scholar
  4. 4.
    Zuberbier T, Lotvall J, Simoens S, Subramanian S, Church MK (2014) Economic burden of inadequate management of allergic diseases in the European Union: a GA(2)LEN review. Allergy 69(10):1275. doi: 10.1111/all.12470 CrossRefPubMedGoogle Scholar
  5. 5.
    Traidl-Hoffmann C, Jakob T, Behrendt H (2009) Determinants of allergenicity. J Allergy Clin Immunol 123:558–566CrossRefPubMedGoogle Scholar
  6. 6.
    Girard M, Israel-Assayag E, Cormier Y (2004) Pathogenesis of hypersensitivity pneumonitis. Curr Opin Allergy Clin Immunol 4:93–98CrossRefPubMedGoogle Scholar
  7. 7.
    Werfel T, Allam JP, Biedermann T et al (2016) Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol 138:336–349CrossRefPubMedGoogle Scholar
  8. 8.
    Thyssen JP, Linneberg A, Ross-Hansen K et al (2013) Filaggrin mutations are strongly associated with contact sensitization in individuals with dermatitis. Contact Derm 68:273–276CrossRefPubMedGoogle Scholar
  9. 9.
    Filipiak-Pittroff B, Schnopp C, Berdel D et al (2011) Predictive value of food sensitization and filaggrin mutations in children with eczema. J Allergy Clin Immunol 128:1235–1241e5CrossRefPubMedGoogle Scholar
  10. 10.
    Wimmer M, Alessandrini F, Gilles S et al (2015) Pollen-derived adenosine is a necessary cofactor for ragweed allergy. Allergy 70:944–954CrossRefPubMedGoogle Scholar
  11. 11.
    Gilles S, Behrendt H, Ring J, Traidl-Hoffmann C (2012) The pollen enigma: modulation of the allergic immune response by non-allergenic, pollen-derived compounds. Curr Pharm Des 18:2314–2319CrossRefPubMedGoogle Scholar
  12. 12.
    Breuer K, Uter W, Geier J (2015) Epidemiological data on airborne contact dermatitis – results of the IVDK. Contact Derm 73:239–247CrossRefPubMedGoogle Scholar
  13. 13.
    Swinnen I, Ghys K, Kerre S, Constandt L, Goossens A (2014) Occupational airborne contact dermatitis from benzodiazepines and other drugs. Contact Derm 70:227–232CrossRefPubMedGoogle Scholar
  14. 14.
    Swinnen I, Goossens A (2013) An update on airborne contact dermatitis: 2007–2011. Contact Derm 68:232–238CrossRefPubMedGoogle Scholar
  15. 15.
    Hunter KJ, Shelley JC, Haworth AE (2008) Airborne allergic contact dermatitis to methylchloroisothiazolinone/methylisothiazolinone in ironing water. Contact Derm 58:183–184CrossRefPubMedGoogle Scholar
  16. 16.
    Kramer U, Schmitz R, Ring J, Behrendt H (2015) What can reunification of East and West Germany tell us about the cause of the allergy epidemic? Clin Exp Allergy 45:94–107CrossRefPubMedGoogle Scholar
  17. 17.
    Sozanska B, Blaszczyk M, Pearce N, Cullinan P (2014) Atopy and allergic respiratory disease in rural Poland before and after accession to the European Union. J Allergy Clin Immunol 133:1347–1353CrossRefPubMedGoogle Scholar
  18. 18.
    Stein MM, Hrusch CL, Gozdz J et al (2016) Innate immunity and asthma risk in amish and hutterite farm children. N Engl J Med 375:411–421CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nylund L, Nermes M, Isolauri E, Salminen S, De Vos WM, Satokari R (2015) Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria. Allergy 70:241–244CrossRefPubMedGoogle Scholar
  20. 20.
    Hua X, Goedert JJ, Pu A, Yu G, Shi J (2016) Allergy associations with the adult fecal microbiota: analysis of the American Gut Project. EBioMedicine 3:172–179CrossRefPubMedGoogle Scholar
  21. 21.
    Roduit C, Frei R, Depner M et al (2014) Increased food diversity in the first year of life is inversely associated with allergic diseases. J Allergy Clin Immunol 133:1056–1064CrossRefPubMedGoogle Scholar
  22. 22.
    Spieksma FTM, Corden J, Detandt M, Millington W, Nikkels H (2003) Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia (Bologna) 19:171–184CrossRefGoogle Scholar
  23. 23.
    Clot B (2003) Trends in airborne pollen: an overview of 21 years of data in Neuchatel (Switzerland). Aerobiologia (Bologna) 17:25–29CrossRefGoogle Scholar
  24. 24.
    Damialis A, Gioulekas D, Vokou D (2007) Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmos Environ 41:7011–7021CrossRefGoogle Scholar
  25. 25.
    Yamada T, Saito H, Fujieda S (2014) Present state of Japanese cedar pollinosis: the national affliction. J Allergy Clin Immunol 133:632–639e5CrossRefPubMedGoogle Scholar
  26. 26.
    Lake IR, Jones NR, Agnew M et al (2016) Climate change and future pollen allergy in Europe. Environ Health Perspect. doi: 10.1289/ehp173 PubMedPubMedCentralGoogle Scholar
  27. 27.
    Motta AC, Marliere M, Peltre G, Sterenberg PA, Lacroix G (2006) Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen. Int Arch Allergy Immunol 139:294–298CrossRefPubMedGoogle Scholar
  28. 28.
    Behrendt H, Becker WM, Fritzsche C et al (1997) Air pollution and allergy: experimental studies on modulation of allergen release from pollen by air pollutants. Int Arch Allergy Immunol 113:69–74CrossRefPubMedGoogle Scholar
  29. 29.
    Kanter U, Heller W, Durner J et al (2013) Molecular and immunological characterization of ragweed (Ambrosia artemisiifolia L.) pollen after exposure of the plants to elevated ozone over a whole growing season. PLOS ONE 8:e61518CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Beck I, Jochner S, Gilles S et al (2013) High environmental ozone levels lead to enhanced allergenicity of birch pollen. PLOS ONE 8:e80147CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    El Kelish A, Zhao F, Heller W et al (2014) Ragweed (Ambrosia artemisiifolia) pollen allergenicity: superSAGE transcriptomic analysis upon elevated CO2 and drought stress. BMC Plant Biol 14:176CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Thacher JD, Gruzieva O, Pershagen G et al (2016) Parental smoking and development of allergic sensitization from birth to adolescence. Allergy 71:239–248CrossRefPubMedGoogle Scholar
  33. 33.
    Feng M, Yang Z, Pan L et al (2016) Associations of early life exposures and environmental factors with asthma among children in rural and urban areas of Guangdong. China Chest 149:1030–1041CrossRefPubMedGoogle Scholar
  34. 34.
    Klumper C, Kramer U, Lehmann I et al (2015) Air pollution and cytokine responsiveness in asthmatic and non-asthmatic children. Environ Res 138:381–390CrossRefPubMedGoogle Scholar
  35. 35.
    Jacquemin B, Siroux V, Sanchez M et al (2015) Ambient air pollution and adult asthma incidence in six European cohorts (ESCAPE). Environ Health Perspect 123:613–621PubMedPubMedCentralGoogle Scholar
  36. 36.
    Obersteiner A, Gilles S, Frank U et al (2016) Pollen-associated microbiome correlates with pollution parameters and the allergenicity of pollen. PLOS ONE 11:e0149545CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Maier KL, Alessandrini F, Beck-Speier I et al (2008) Health effects of ambient particulate matter – biological mechanisms and inflammatory responses to in vitro and in vivo particle exposures. Inhal Toxicol 20:319–337CrossRefPubMedGoogle Scholar
  38. 38.
    Riediker M, Monn C, Koller T, Stahel WA, Wuthrich B (2001) Air pollutants enhance rhinoconjunctivitis symptoms in pollen-allergic individuals. Ann Allergy Asthma Immunol 87:311–318CrossRefPubMedGoogle Scholar
  39. 39.
    Schaumann F, Fromke C, Dijkstra D et al (2014) Effects of ultrafine particles on the allergic inflammation in the lung of asthmatics: results of a double-blinded randomized cross-over clinical pilot study. Part Fibre Toxicol 11:39CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Oteros J, Pusch G, Weichenmeier I et al (2015) Automatic and online pollen monitoring. Int Arch Allergy Immunol 167:158–166CrossRefPubMedGoogle Scholar
  41. 41.
    Du Toit G, Sayre PH, Roberts G et al (2016) Effect of avoidance on peanut allergy after early peanut consumption. N Engl J Med 374:1435–1443CrossRefPubMedGoogle Scholar
  42. 42.
    Thacher JD, Gruzieva O, Pershagen G et al (2016) Mold and dampness exposure and allergic outcomes from birth to adolescence: data from the BAMSE cohort. Allergy. doi: 10.1111/all.13102 Google Scholar
  43. 43.
    Jutel M, Agache I, Bonini S et al (2016) International consensus on allergen immunotherapy II: mechanisms, standardization, and pharmacoeconomics. J Allergy Clin Immunol 137:358–368CrossRefPubMedGoogle Scholar
  44. 44.
    Macginnitie AJ, Rachid R, Gragg H et al (2016) Omalizumab facilitates rapid oral desensitization for peanut allergy. J Allergy Clin Immunol 137:AB194. doi: 10.1016/j.jaci.2015.12.766 CrossRefGoogle Scholar
  45. 45.
    Chaker AM, Shamji MH, Dumitru FA et al (2016) Short-term subcutaneous grass pollen immunotherapy under the umbrella of anti-IL-4: a randomized controlled trial. J Allergy Clin Immunol 137:452–461e9CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Lehrstuhl für Umweltmedizin, UNIKA-TTechnische Universität MünchenAugsburgDeutschland
  2. 2.CK-CARE, Christine Kühne – Center for Allergy Research and EducationDavosSchweiz
  3. 3.Institut für UmweltmedizinHelmholtzzentrum München, German Research Center for Environmental HealthMünchenDeutschland
  4. 4.Ambulanz für UmweltmedizinKlinikum AugsburgAugsburgDeutschland

Personalised recommendations