Umweltschadstoffe als Adjuvanzien und Co-Faktoren einer immunologischen Erkrankung

Leitthema

Zusammenfassung

Aufgabe des Immunsystems ist es, den Körper gegen eindringende Krankheitserreger zu schützen. Voraussetzung dafür ist die Fähigkeit, zwischen eigen und fremd zu unterscheiden, das heißt körperfremde Stoffe abzuwehren und gleichzeitig körpereigene Stoffe zu tolerieren. Ein komplexes regulatorisches Netzwerk sorgt dabei für die Aufrechterhaltung des sensiblen Gleichgewichts zwischen Eigen- und Fremderkennung. Wird dieses gestört, entwickeln sich chronische Entzündungsreaktionen, wie Allergien oder Autoimmunreaktionen, oder Infektionserkrankungen, weil das Immunsystem eindringende Erreger nicht mehr effizient eliminieren kann. Umweltschadstoffe können derartige Störungen auslösen, indem sie die Funktion von Zellen des Immunsystems so modifizieren, dass diese entweder übersensibel auf Allergene oder körpereigene Strukturen reagieren oder Pathogene nicht mehr adäquat bekämpfen können. Eine derartige indirekte Wirkung bezeichnet man auch als einen adjuvanten Effekt. Für viele Stoffe aus unserem unmittelbaren Lebensumfeld wie z. B. Pestizide, Schwermetalle, Holzschutzmittel, oder flüchtige organische Verbindungen sind derartige adjuvante Effekte bekannt. Die Mechanismen, über die Umweltschadstoffe zur Entstehung chronisch-entzündlicher Erkrankungen beitragen können, sind vielschichtig und werden hier am Beispiel von Asthma und Allergien diskutiert.

Während das Immunsystem eines gesunden Erwachsenen meist problemlos in der Lage ist, auch unter Umwelteinflüssen zuverlässig zwischen eigen und fremd zu unterscheiden, reagieren Kinder sehr viel sensibler auf die gleiche Belastung. Um zu verhindern, dass in dieser hochsensiblen Phase der frühen Kindheit Krankheitsrisiken unter dem Einfluss von Umweltbelastungen geprägt werden, sind Kinder deshalb besonders zu schützen.

Schlüsselwörter

Immunsystem Umweltschadstoffe Adjuvante Effekte Flüchtige organische Verbindungen VOC Sensible Zeitfenster 

Environmental pollutants as adjuvant factors of immune system derived diseases

Abstract

The main task of the immune system is to protect the body against invading pathogens. To be able to do so, immune cells must be able to recognize and combat exogenous challenges and at the same time tolerate body-borne structures. A complex regulatory network controls the sensitive balance between defense and tolerance. Perturbation of this network ultimately leads to the development of chronic inflammation, such as allergies, autoimmune reactions, and infections, because the immune system is no longer able to efficiently eliminate invading pathogens. Environmental pollutants can cause such perturbations by affecting the function of immune cells in such a way that they would react hypersensitively against allergens and the body’s own structures, respectively, or that they would be no longer able to adequately combat pathogens. This indirect effect is also known as adjuvant effect. For pesticides, heavy metals, wood preservatives, or volatile organic compounds such adjuvant effects are well known. Examples of the mechanism by which environmental toxins contribute to chronic inflammatory diseases are manifold and will be discussed along asthma and allergies.

While the immune system of healthy adults is typically well able to distinguish between foreign and endogenous substances even under adverse environmental conditions, that of children would react much more sensible upon comparable environmental challenges. To prevent priming for diseases by environmental cues during that highly sensitive period of early childhood children are to be particularly protected.

Keywords

Immune system Environmental pollutants Adjuvant effects Volatile organic compounds VOC Sensitive time window 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

I. Lehmann gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Paciência I, Madureira J, Rufo J, Moreira A, Fernandes Ede O (2016) A systematic review of evidence and implications of spatial and seasonal variations of volatile organic compounds (VOC) in indoor human environments. J Toxicol Environ Health B Crit Rev 19(2):47–64CrossRefPubMedGoogle Scholar
  2. 2.
    Nurmatov UB, Tagiyeva N, Semple S, Devereux G, Sheikh A (2015) Volatile organic compounds and risk of asthma and allergy: a systematic review. Eur Respir Rev 135:92–101CrossRefGoogle Scholar
  3. 3.
    Diez U, Rehwagen M, Rolle-Kampczyk U, Wetzig H, Schulz R, Richter M, Lehmann I, Borte M, Herbarth O (2003) Redecoration of apartments promotes obstructive bronchitis in atopy risk infants. Int J Hyg Environ Health 206:173–179CrossRefPubMedGoogle Scholar
  4. 4.
    Franck U, Weller A, Röder S, Herberth G, Junge KM, Kohajda T, von Bergen M, Rolle-Kampczyk U, Diez U, Borte M, Lehmann I (2014) Prenatal VOC exposure and redecoration are related to wheezing symptoms in early infancy. Environ Int 73:393–401CrossRefPubMedGoogle Scholar
  5. 5.
    Wieslander G, Norbäck D, Edling C (1997) Airway symptoms among house painters in relation to exposure to volatile organic compounds (VOCS)-a longitudinal study. Ann Occup Hyg 41(2):155–166CrossRefPubMedGoogle Scholar
  6. 6.
    Wieslander G, Norbäck D, Björnsson E, Janson C, Boman G (1997) Asthma and the indoor environment: the significance of emission of formaldehyde and volatile organic compounds from newly painted indoor surfaces. Int Arch Occup Environ Health 69(2):115–124CrossRefPubMedGoogle Scholar
  7. 7.
    Bent S, Zwiener G (1996) Solvent emissions in a school building after using a construction moisture protection substance. Gesundheitswesen 58(4):234–236PubMedGoogle Scholar
  8. 8.
    Bönisch U, Schütze N, Böhme A, Kohajda T, Mögel I, von Bergen M, Simon JC, Reiprich M, Lehmann I, Polte T (2012) Polyvinylchloride (PVC) evaporated volatile organic compounds may enhance the asthma phenotype in mice. PLOS ONE 7(7):e39817CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rumchev K, Spickett J, Bulsara M, Phillips M, Stick S (2004) Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax 59(9):746–751CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fischäder G, Röder-Stolinski C, Wichmann G, Nieber K, Lehmann I (2008) Induction of inflammatory signals in lung epithelial cells by volatile organic compounds. Toxicol In Vitro 22(2):359–366CrossRefPubMedGoogle Scholar
  11. 11.
    Röder-Stolinski C, Fischäder G, Oostingh GJ, Feltens R, Kohse F, von Bergen M et al (2008) Styrene induces an inflammatory response in human lung epithelial cells via oxidative stress and NF-kB activation. Toxicol Appl Pharmacol 231(2):241–247CrossRefPubMedGoogle Scholar
  12. 12.
    Röder-Stolinski C, Fischäder G, Oostingh GJ, Eder K, Duschl A, Lehmann I (2008) The volatile compound chlorobenzene can induce the secretion of inflammatory mediators by lung epithelial cells via the NF-κB and p38 MAP kinase pathway. Inhal Toxicol 20:813–820CrossRefPubMedGoogle Scholar
  13. 13.
    Feltens R, Mögel I, Röder-Stolinski C, Simon J, Lehmann I (2010) Chlorobenzene induces oxidative stress in human lung epithelial cells. Toxicol Appl Pharmacol 242(1):100–108CrossRefPubMedGoogle Scholar
  14. 14.
    Lehmann I, Rehwagen M, Diez U, Seiffart A, Rolle-Kampczyk U, Richter M, Wetzig H, Borte M, Herbarth O (2001) Enhanced in vivo IgE production and T cell polarization to the type 2 phenotype in association with indoor exposure to VOC: results of the LARS study. Int J Hyg Env Health 204:211–221CrossRefGoogle Scholar
  15. 15.
    Herberth G, Herzog T, Hinz D, Röder S, Sack U, Diez U, Borte M, Lehmann I (2013) Renovation activities during pregnancy induce a Th2 shift in fetal but not in maternal immune system. Int J Hyg Environ Health 216:309–316CrossRefPubMedGoogle Scholar
  16. 16.
    Herberth G, Heinrich J, Röder S, Figl A, Weiss M, Diez U et al (2010) Reduced IFN-gamma- and enhanced IL-4-producing CD4+ cord blood T cells are associated with a higher risk for atopic dermatitis during the first 2 yr of life. Pediatr Allergy Immunol 21(1):5–13CrossRefPubMedGoogle Scholar
  17. 17.
    Bartra J, Mullol J, del Cuvillo A, Dávila I, Ferrer M, Jáuregui I et al (2007) Air pollution and allergens. J Investig Allergol Clin Immunol 17(Suppl. 2):3–8PubMedGoogle Scholar
  18. 18.
    Beck I, Jochner S, Gilles S, McIntyre M, Buters JTM, Schmidt-Weber C et al (2016) High environmental ozone levels lead to enhanced allergenicity of birch pollen. PLOS ONE 8(11):e80147CrossRefGoogle Scholar
  19. 19.
    Gilles-Stein S, Beck I, Chaker A, Bas M, McIntyre M, Cifuentes L et al (2016) Pollen derived low molecular compounds enhance the human allergen specific immune response in vivo. Clin Exp Allergy 46(10):1355–1365CrossRefPubMedGoogle Scholar
  20. 20.
    Lehmann I, Sack U, Lehmann J (2011) Metal ions in toxicology: effects, interactions, Interdependencies. In: Sigel A, Sigel H, Sigel RKO (Hrsg) Metal ions in life sciences, Bd. 8. The Royal Society of Chemistry, Cambridge, S 157–185Google Scholar
  21. 21.
    Shen HM, Zhang QF (1994) Risk assessment of experimental carcinogenicity and occupational lung cancer. Environ Health Perspect 102(Suppl 1):275–282CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hemdan NY, Emmrich F, Sack U, Wichmann G, Lehmann J, Lehmann I (2006) Low cadmium doses bias the human immune response toward TH2-type. Toxicology 222(1–2):37–45CrossRefPubMedGoogle Scholar
  23. 23.
    Riedler J, Braun-Fahrländer C, Eder W, Schreuer M, Waser M, Maisch S, Carr D, Schierl R, Nowak D, von Mutius E, ALEX Study Team (2001) Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 358(9288):1129–1133CrossRefPubMedGoogle Scholar
  24. 24.
    Illi S, Depner M, Genuneit J, Horak E, Loss G, Strunz-Lehner C et al (2012) Protection from childhood asthma and allergy in Alpine farm environments-the GABRIEL Advanced Studies. J Allergy Clin Immunol 129(6):1470–1477CrossRefPubMedGoogle Scholar
  25. 25.
    von Mutius E (2016) The microbial environment and its influence on asthma prevention in early life. J Allergy Clin Immunol 137(3):680–689CrossRefGoogle Scholar
  26. 26.
    Frei R, Roduit C, Bieli C, Loeliger S, Waser M, Scheynius A et al (2014) Expression of genes related to anti-inflammatory pathways are modified among farmers’ children. PLOS ONE 9(3):e91097CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kääriö H, Huttunen K, Karvonen AM, Schaub B, von Mutius E, Pekkanen J et al (2016) Exposure to a farm environment is associated with T helper 1 and regulatory cytokines at age 4.5 years. Clin Exp Allergy 46(1):71–77CrossRefPubMedGoogle Scholar
  28. 28.
    Lluis A, Depner M, Gaugler B, Saas P, Casaca VI, Raedler D et al (2014) Increased regulatory T‑cell numbers are associated with farm milk exposure and lower atopic sensitization and asthma in childhood. J Allergy Clin Immunol 133(2):551–559CrossRefPubMedGoogle Scholar
  29. 29.
    Douwes J, Cheng S, Travier N, Cohet C, Niesink A, McKenzie J et al (2008) Farm exposure in utero may protect against asthma, hay fever and eczema. Eur Respir J 32(3):603–611CrossRefPubMedGoogle Scholar
  30. 30.
    Brand S, Teich R, Dicke T, Harb H, Yildirim AÖ, Tost J et al (2011) Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol 128(3):618–625CrossRefPubMedGoogle Scholar
  31. 31.
    Reiprich M, Rudzok S, Schütze N, Simon JC, Lehmann I, Trump S, Polte T (2013) Inhibition of endotoxin-induced perinatal asthma protection by pollutants in an experimental mouse model. Allergy 68(4):481–489CrossRefPubMedGoogle Scholar
  32. 32.
    Ginter E, Simko V (2016) Deficiency of vitamin D and vitamin C in the pathogenesis of bronchial asthma. Bratisl Lek Listy 117(6):305–307PubMedGoogle Scholar
  33. 33.
    Fritsche K (2006) Fatty acids as modulators of the immune response. Annu Rev Nutr 26:45–73CrossRefPubMedGoogle Scholar
  34. 34.
    Simon AK, Hollander GA, McMichael A (2015) Evolution of the immunesystem in humans from infancy to old age. Proc R Soc B282:20143085CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department UmweltimmunologieHelmholtz-Zentrum für UmweltforschungLeipzigDeutschland

Personalised recommendations