Skip to main content
Log in

Die Interaktion zwischen Darmbakterien und Mensch als zentraler Faktor für die Darmgesundheit

Mikrobiom und chronisch entzündliche Darmerkrankungen

Interaction between humans and intestinal bacteria as a determinant for intestinal health

Intestinal microbiome and inflammatory bowel diseases

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Aktuelle Forschungsergebnisse zeigen, dass das intestinale Mikrobiom, die Gesamtheit aller intestinalen Mikroorganismen und ihrer Gene, eine wichtige Rolle für die Gesundheit des Menschen spielt und als eine Art „externes Organ“ betrachtet werden kann. Das intestinale Mikrobiom ist ein komplexes und dynamisches System, das über die Grenzfläche Darm das Immunsystem und den Stoffwechsel des gesamten Organismus beeinflusst. Für die Entwicklung und Aufrechterhaltung der normalen Darmfunktionen sind die Zusammensetzung und Funktionalität der intestinalen Mikrobiota besonders wichtige Faktoren. Chronisch entzündliche Darmerkrankungen (CED) sind durch eine dysregulierte Interaktion zwischen dem Wirtsorganismus und seiner intestinalen Mikrobiota gekennzeichnet. Der vorliegende Beitrag fasst das aktuelle Wissen zum Aufbau und zur Entwicklung des intestinalen Mikrobioms zusammen und gibt einen Einblick in die wechselseitige Interaktion zwischen Wirt und Mikrobiota. Er informiert über die Erkenntnisse zur Rolle des Mikrobioms bei CED und diskutiert im Anschluss das protektive Potenzial mikrobieller Therapien bei CED.

Abstract

Recent scientific results underline the importance of the intestinal microbiome, the totality of all intestinal microbes and their genes, for the health of the host organism. The intestinal microbiome can therefore be considered as a kind of “external organ”. It has been shown that the intestinal microbiota is a complex and dynamic ecosystem that influences host immunity and metabolism beyond the intestine. The composition and functionality of the intestinal microbiota is of major importance for the development and maintenance of intestinal functions. Inflammatory bowel diseases (IBD) are characterized by dysregulated interactions between the host and its microbiota.

The present contribution summarizes current knowledge of the composition and development of the intestinal microbiome and gives an overview of the bidirectional interaction between host and microbiota. The contribution informs about insights regarding the role of the intestinal microbiota in IBD and finally discusses the protective potential of microbial therapies in the context of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Gollwitzer ES, Marsland BJ (2014) Microbiota abnormalities in inflammatory airway diseases – potential for therapy. Pharmacol Ther 141(1):32–39

    Article  CAS  PubMed  Google Scholar 

  2. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214

    Article  Google Scholar 

  3. Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Jost L (2006) Entropy and diversity. Oikos 113(2):363–375

    Article  Google Scholar 

  5. Lozupone CA et al (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Dominguez-Bello MG et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107(26):11971–11975

    Article  PubMed Central  PubMed  Google Scholar 

  8. Musilova S et al (2014) Beneficial effects of human milk oligosaccharides on gut microbiota. Benef Microbes 5(3):273–283

    Article  CAS  PubMed  Google Scholar 

  9. Liu B, Newburg DS (2013) Human milk glycoproteins protect infants against human pathogens. Breastfeed Med 8(4):354–362

    Article  PubMed Central  PubMed  Google Scholar 

  10. Koenig JE et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108(Suppl 1):4578–4585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Claesson MJ et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184

    Article  CAS  PubMed  Google Scholar 

  12. Turnbaugh PJ et al (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Stewart JA, Chadwick VS, Murray A (2005) Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. J Med Microbiol 54(Pt 12):1239–1242

    Article  CAS  PubMed  Google Scholar 

  14. Lepage P et al (2011) Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 141(1):227–236

    Article  PubMed  Google Scholar 

  15. Wu GD et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108(Suppl 1):4554–4561

  17. Virta L et al (2012) Association of repeated exposure to antibiotics with the development of pediatric Crohnʼs disease – a nationwide, register-based finnish case-control study. Am J Epidemiol 175(8):775–784

    Article  PubMed  Google Scholar 

  18. Kronman MP et al (2012) Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics 130(4):e794–e803

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ulven T (2012) Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front Endocrinol (Lausanne) 3:111

    Google Scholar 

  20. Ramakrishna BS (2013) Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol 28(Suppl 4):9–17

    Article  CAS  PubMed  Google Scholar 

  21. Smith K, McCoy KD, Macpherson AJ (2007) Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol 19(2):59–69

    Article  CAS  PubMed  Google Scholar 

  22. Jostins L et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422):119–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tong M et al (2014) Reprograming of gut microbiome energy metabolism by the FUT2 Crohnʼs disease risk polymorphism. ISME J 8(11):2193–2206

    Article  CAS  PubMed  Google Scholar 

  24. Frank DN et al (2011) Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis 17(1):179–184

    Article  PubMed  Google Scholar 

  25. Ellinghaus D et al (2013) Association between variants of PRDM1 and NDP52 and Crohnʼs disease, based on exome sequencing and functional studies. Gastroenterology 145(2):339–347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Rook GA (2009) Review series on helminths, immune modulation and the hygiene hypothesis: the broader implications of the hygiene hypothesis. Immunology 126(1):3–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kim SC et al (2005) Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology 128(4):891–906

    Article  CAS  PubMed  Google Scholar 

  28. Rath HC, Wilson KH, Sartor RB (1999) Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect Immun 67(6):2969–2974

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Manichanh C et al (2006) Reduced diversity of faecal microbiota in Crohnʼs disease revealed by a metagenomic approach. Gut 55(2):205–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Morgan XC et al (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13(9):R79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Gevers D et al (2014) The treatment-naive microbiome in new-onset Crohnʼs disease. Cell Host Microbe 15(3):382–392

    Article  CAS  PubMed  Google Scholar 

  32. Hakansson A et al (2014) Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice. Clin Exp Med

  33. Sokol H et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105(43):16731–16736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Martin R et al (2014) The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm Bowel Dis 20(3):417–430

    Article  PubMed  Google Scholar 

  35. Mardini HE, Grigorian AY (2014) Probiotic mix VSL#3 is effective adjunctive therapy for mild to moderately active ulcerative colitis: a meta-analysis. Inflamm Bowel Dis 20(9):1562–1567

    Article  PubMed  Google Scholar 

  36. Shen J, Zuo ZX, Mao AP (2014) Effect of probiotics on inducing remission and maintaining therapy in ulcerative colitis, Crohnʼs disease, and pouchitis: meta-analysis of randomized controlled trials. Inflamm Bowel Dis 20(1):21–35

    Article  PubMed  Google Scholar 

  37. Kruis W et al (2004) Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53(11):1617–1623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Hart AL et al (2004) Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 53(11):1602–1609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. von Schillde MA et al (2012) Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe 11(4):387–396

    Article  Google Scholar 

  40. Mondel M et al (2009) Probiotic E. coli treatment mediates antimicrobial human beta-defensin synthesis and fecal excretion in humans. Mucosal Immunol 2(2):166–172

    Article  CAS  PubMed  Google Scholar 

  41. Ukena SN et al (2007) Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2(12):e1308

    Article  PubMed Central  PubMed  Google Scholar 

  42. Kuhbacher T et al (2006) Bacterial and fungal microbiota in relation to probiotic therapy (VSL#3) in pouchitis. Gut 55(6):833–841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Arthur JC et al (2013) VSL#3 probiotic modifies mucosal microbial composition but does not reduce colitis-associated colorectal cancer. Sci Rep 3:2868

    Article  PubMed Central  PubMed  Google Scholar 

  44. McNulty NP et al (2011) The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med 3(106):106ra106

    Article  Google Scholar 

  45. Jorup-Ronstrom C et al (2012) Fecal transplant against relapsing Clostridium difficile-associated diarrhea in 32 patients. Scand J Gastroenterol 47(5):548–552

    Article  PubMed  Google Scholar 

  46. van Nood E et al (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368(5):407–415

    Article  PubMed  Google Scholar 

  47. Angelberger S et al (2013) Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am J Gastroenterol 108(10):1620–1630

    Article  CAS  PubMed  Google Scholar 

  48. Kunde S et al (2013) Safety, tolerability, and clinical response after fecal transplantation in children and young adults with ulcerative colitis. J Pediatr Gastroenterol Nutr 56(6):597–601

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Haller.

Ethics declarations

Interessenkonflikt

D. Haller und G. Hörmannsperger erklären, dass kein Interessenkonflikt besteht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haller, D., Hörmannsperger, G. Die Interaktion zwischen Darmbakterien und Mensch als zentraler Faktor für die Darmgesundheit. Bundesgesundheitsbl. 58, 159–165 (2015). https://doi.org/10.1007/s00103-014-2095-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-014-2095-0

Schlüsselwörter

Keywords

Navigation