Skip to main content

Advertisement

Log in

Monitoring von gesundheitsgefährdenden Nagetieren

Projekte, Ziele und Ergebnisse

Monitoring populations of rodent reservoirs of zoonotic diseases

Projects, aims and results

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Nagetiere sind Reservoirwirte für zoonotische Krankheitserreger, die auf Mensch, Haus- und Nutztiere übertragen werden können und dort z. T. schwere Erkrankungen hervorrufen. Solche Zoonoseerreger repräsentieren mehr als zwei Drittel der heute bekannten humanpathogenen Krankheitserreger. Die Epidemiologie einiger Zoonoseerreger (z. B. Hantaviren) ist an die Populationsdynamik von Nagetieren gebunden. Kommt es zu einer Massenvermehrung bei der Reservoirart, können gehäuft Humanerkrankungen auftreten. Bei anderen Nagetier-übertragenen Zoonoseerregern sind solche Phänomene nicht bekannt; z. T. ist die Nagetierwirtsspezifität dieser Erreger noch unklar. Ein Monitoring relevanter Nagetierpopulationen und assoziierter zoonotischer Pathogene ist unabdingbar, um 1.) die Verbreitung und Epidemiologie der Zoonoseerreger zu verstehen und 2.) Vorhersagesysteme für Zoonoseausbrüche zu entwickeln. Momentan existieren in Deutschland aber keine systematischen und langfristigen Aktivitäten, weil sich Monitoringvorhaben im Wesentlichen auf den Bereich Pflanzenschutz [Feldmaus (Microtus arvalis), forstschädliche Nagetiere] beschränken. Jedoch gab es seit dem Jahr 2000 projektspezifische Arbeiten über jeweils wenige Jahre und Monitoringprogramme zum Vorkommen vor allem von Wanderratten (Rattus norvegicus) in Niedersachen und Hamburg. Dank der intensiven Zusammenarbeit von Behörden und Forschungseinrichtungen ist es gelungen, zahlreiche Informationen zur Verbreitung und Bedeutung Nagetier-übertragener Zoonosen zu sammeln. Für das Verständnis der Verbindung zwischen Nagetier-Populationsdynamik und dem Zoonosegeschehen und speziell zur Entwicklung von Risikoprognosen sind aber räumlich und zeitlich ausgedehnte Monitoringprogramme erforderlich. Dabei sollten bestehende Netzwerke und Kooperationsbeziehungen genutzt, weitere Kooperationspartner (z. B. Schädlingsbekämpfungsfirmen) einbezogen und Synergien der unterschiedlichen Forschungsbereiche genutzt werden.

Abstract

Rodents can harbor and transmit pathogens that can cause severe disease in humans, companion animals and livestock. Such zoonotic pathogens comprise more than two thirds of the currently known human pathogens. The epidemiology of some zoonotic pathogens, such as hantaviruses, can be linked to the population dynamics of the rodent host. In this case, during an outbreak of the rodent host population many human infections may occur. In other rodent-borne zoonotic diseases such phenomena are not known and in many cases the rodent host specificity of a given pathogen is unclear. The monitoring of relevant rodent populations and of the rodent-borne zoonotic pathogens is essential to (1) understand the distribution and epidemiology of pathogens and (2) develop forecasting tools to predict outbreaks of zoonoses. Presently, there are no systematic long-term monitoring programs in place for zoonoses in Germany. Rodent monitoring activities are largely restricted to the plant protection sector, such as for the common vole (Microtus arvalis) and forest-damaging rodents. However, during the last 10–15 years a number of specific research projects have been initiated and run for a few years and Norway rat (Rattus norvegicus) monitoring has been implemented in Hamburg and Lower Saxony. Based on close cooperation of federal and state authorities and research institutions these efforts could be utilized to gain information about the distribution and importance of rodent-borne zoonoses. Nevertheless, for the integration of rodent population dynamics and zoonotic disease patterns and especially for developing predictive models, long-term monitoring is urgently required. To establish a systematic long-term monitoring program, existing networks and cooperation need to be used, additional collaborators (e.g., pest control operators) should be included and synergetic effects of different scientific fields should be utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Pfeffer M, Essbauer S, Nöckler K et al (2010) Aktueller Kenntnisstand zu Nagetier-übertragenen Zoonosen in Deutschland: Herausforderungen für die zukünftige Forschung. Rundsch Fleischhyg Lebensmittelüberw 62:45–51

    Google Scholar 

  2. Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature 451:990–U994

    Article  PubMed  CAS  Google Scholar 

  3. Robert Koch-Institut (2009) Kuhpocken: Zu einer Häufung von Infektionen nach Kontakt zu „Schmuseratten“ im Großraum München. Epid Bull 6:53–56

    Google Scholar 

  4. Ulrich RG, Heckel G, Pelz HJ et al (2009) Nagetiere und nagetierassoziierte Krankheitserreger – das Netzwerk „Nagetier-übertragene Pathogene“ stellt sich vor. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 52:352–369

    Article  CAS  Google Scholar 

  5. Palo R (2009) Time series analysis performed on nephropathia epidemica in humans of Northern Sweden in relation to bank vole population dynamic and the NAO index. Zoonoses Public Health 56:150–156

    Article  PubMed  Google Scholar 

  6. Tersago K, Verhagen R, Servais A et al (2009) Hantavirus disease (nephropathia epidemica) in Belgium: effects of tree seed production and climate. Epidemiol Infect 137:250–256

    Article  PubMed  CAS  Google Scholar 

  7. Jacob J, Tkadlec E (2010) Rodent outbreaks in Europe: dynamics and damage. In: Singleton GR, Belmain S, Brown PR, Hardy B (Hrsg) Rodent outbreaks – ecology and impacts. International Rice Research Institute, Los Baños, S 207–223

  8. Meerburg BG, Singleton GR, Kijlstra A (2009) Rodent-borne diseases and their risks for public health. Crit Rev Microbiol 35:221–270

    Article  PubMed  Google Scholar 

  9. Ewers C, Bethe A, Semmler T et al (2012) Extended‐spectrum β‐lactamase‐producing and AmpC‐producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol and Infect 18:646–655

    Article  CAS  Google Scholar 

  10. Runge M, Keyserlingk M von, Braune S et al (2012) Distribution of rodenticide resistance and zoonotic pathogens in Norway rats in Lower Saxony and Hamburg, Germany. Pest Manag Sci 69:403–408

    Article  PubMed  CAS  Google Scholar 

  11. Essbauer S, Schmidt-Chanasit J, Madeja EL et al (2007) Nephropathia epidemica in metropolitan area, Germany. Emerg Infect Dis 13:1271–1273

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ulrich R, Schmidt-Chanasit J, Schlegel M et al (2008) Network „Rodent-borne pathogens“ in Germany: longitudinal studies on the geographical distribution and prevalence of hantavirus infections. Parasitol Res 103:121–129

    Article  Google Scholar 

  13. Plenge-Bönig A, Zickert A, Baumgardt K, Sammann A (2011) Results of four years of digital urban monitoring of Rattus norvegicus with RatMap in Hamburg including data on infestation near the surface and in underground sewers. Julius-Kühn-Archiv 432:53

  14. Blank FB, Jacob J, Petri A, Esther A (2011) Topography and soil properties contribute to regional outbreak risk variability of common voles (Microtus arvalis). Wildlife Res 38:541–550

    Article  Google Scholar 

  15. Heise S, Lippke J, Wieland H (1991) Beiträge zur Populationsregulation der Feldmaus (Microtus arvalis, Pallas, 1779) I. Reproduktionsintensität. Zool Jahrb Syst 118:257–264

    Google Scholar 

  16. Heise S, Wieland H, Wolna P (1992) Beiträge zur Populationsregulation der Feldmaus (Microtus arvalis, Pallas, 1779) II. Wachstum und Mortalität. Zool Jahrb Syst 119:493–504

    Google Scholar 

  17. Imholt C, Esther A, Perner J, Jacob J (2011) Identification of weather parameters related to regional population outbreak risk of common voles (Microtus arvalis) in Eastern Germany. Wildlife Res 38:551–559

    Article  Google Scholar 

  18. Cornulier T, Yoccoz NG, Bretagnolle V et al (2013) Europe-wide dampening of population cycles in keystone herbivores. Science 340:63–66

    Article  PubMed  CAS  Google Scholar 

  19. Lauenstein G, Barten R (2011) Management von Feldmäusen in der Landwirtschaft. Frunol Delicia GmbH, Unna, S 1–130

  20. Desai S, Treeck U v, Lierz M et al (2009) Resurgence of field fever in a temperate country: an epidemic of leptospirosis among seasonal strawberry harvesters in Germany in 2007. Clin Infect Dis 48:1–7

    Article  Google Scholar 

  21. Reil D, Imholt C, Schmidt S et al (2011) Relationship between bank vole abundance, seroprevalence and human hantavirus infections. Julius-Kühn-Archiv 432:197

  22. Uria IT, Mateu J, Escobar F, Mughini-Gras L (2014) Risk factors and spatial distribution of urban rat infestations. J Pest Sci 87:107–115

    Article  Google Scholar 

  23. Thrall PH, Antonovics J, Hall DW (1993) Host and pathogen coexistence in sexually transmitted and vector-borne diseases characterized by frequency-dependent disease transmission. Am Nat 142:543–552

    Article  Google Scholar 

  24. Mills JN, Ksiazek TG, Peters CJ, Childs JE (1999) Long-term studies of hantavirus reservoir populations in the southwestern United States: a synthesis. Emerg Infect Dis 5:135–142

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Mills JN, Yates TL, Ksiazek TG et al (1999) Long-term studies of hantavirus reservoir populations in the southwestern United States: rationale, potential, and methods. Emerg Infect Dis 5:95–101

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Davis S, Calvet E, Leirs H (2005) Fluctuating rodent populations and risk to humans from rodent-borne zoonoses. Vector Borne Zoonotic Dis 5:305–314

    Article  PubMed  CAS  Google Scholar 

  27. Yates TL, Mills JN, Parmenter CA et al (2002) The ecology and evolutionary history of an emergent disease: hantavirus pulmonary syndrome. Bioscience 52:989–998

    Article  Google Scholar 

  28. Dobly A, Yzoard C, Cochez C et al (2012) Spatiotemporal dynamics of Puumala hantavirus in suburban reservoir rodent populations. J Vector Ecol 37:276–283

    Article  PubMed  Google Scholar 

  29. Olsson GE, White N, Ahlm C et al (2002) Demographic factors associated with hantavirus infection in bank voles (Clethrionomys glareolus). Emerg Infect Dis 8:924–929

    Article  PubMed Central  PubMed  Google Scholar 

  30. Luis AD, Douglass RJ, Hudson PJ et al (2012) Sin Nombre hantavirus decreases survival of male deer mice. Oecologia 169:431–439

    Article  PubMed  Google Scholar 

  31. Dizney LJ, Ruedas LA (2009) Increased host species diversity and decreased prevalence of Sin Nombre virus. Emerg Infect Dis 15:1012–1018

    Article  PubMed Central  PubMed  Google Scholar 

  32. Graham TB, Chomel BB (1997) Population dynamics of the deer mouse (Peromyscus maniculatus) and Sin Nombre virus, California Channel Islands. Emerg Infect Dis 3:367

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Heyman P, Ceianu CS, Christova I et al (2011) A five-year perspective on the situation of haemorrhagic fever with renal syndrome and status of the hantavirus reservoirs in Europe, 2005–2010. Euro Surveill 16 pii=19961

  34. Mills JN, Amman BR, Glass GE (2010) Ecology of hantaviruses and their hosts in North America. Vector Borne Zoonotic Dis 10:563–574

    Article  PubMed  Google Scholar 

  35. Tersago K, Verhagen R, Leirs H (2011) Temporal variation in individual factors associated with hantavirus infection in bank voles during an epizootic: implications for Puumala virus transmission dynamics. Vector Borne Zoonotic Dis 11:715–721

    Article  PubMed  Google Scholar 

  36. Kallio ER, Begon M, Henttonen H et al (2009) Cyclic hantavirus epidemics in humans – predicted by rodent host dynamics. Epidemics 1:101–107

    Article  PubMed  Google Scholar 

  37. Kinnunen PM, Henttonen H, Hoffmann B et al (2011) Orthopox virus infections in Eurasian wild rodents. Vector Borne Zoonotic Dis 11:1133–1140

    Article  PubMed  Google Scholar 

  38. Achazi K, Ruzek D, Donoso-Mantke O et al (2011) Rodents as sentinels for the prevalence of tick-borne encephalitis virus. Vector Borne Zoonotic Dis 11:641–647

    Article  PubMed Central  PubMed  Google Scholar 

  39. Johne R, Heckel G, Plenge-Bonig A et al (2010) Novel hepatitis E virus genotype in Norway rats, Germany. Emerg Infect Dis 16:1452–1455

    Article  PubMed Central  PubMed  Google Scholar 

  40. Johne R, Dremsek P, Kindler E et al (2012) Rat hepatitis E virus: geographical clustering within Germany and serological detection in wild Norway rats (Rattus norvegicus). Infect Genet Evol 12:947–956

    Article  PubMed  Google Scholar 

  41. Guenther S, Bethe A, Fruth A et al (2012) Frequent combination of antimicrobial multiresistance and extraintestinal pathogenicity in Escherichia coli isolates from urban rats (Rattus norvegicus) in Berlin, Germany. PLos One 7:e50331

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Schulz E, Gottschling M, Ulrich RG et al (2012) Isolation of three novel rat and mouse papillomaviruses and their genomic characterization. PLos One 7:e50331

    Article  CAS  Google Scholar 

  43. Ehlers B, Kuchler J, Yasmum N et al (2007) Identification of novel rodent herpesviruses, including the first gammaherpesvirus of Mus musculus. J Virol 81:8091–8100

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Drexler JF, Corman VM, Mueller MA et al (2012) Bats host major mammalian paramyxoviruses. Nat Commun 3:796

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Ettinger J, Hofmann J, Enders M et al (2012) Multiple synchronous outbreaks of Puumala virus, Germany, 2010. Emerg Infect Dis 18:1461–1464

    Article  PubMed Central  PubMed  Google Scholar 

  46. Faber M, Wollny T, Schlegel M et al (2013) Puumala virus outbreak in Western Thuringia, Germany, 2010: epidemiology and strain identification. Zoonoses Public Health 60:549–554

    Article  PubMed  CAS  Google Scholar 

  47. Esther A, Imholt C, Perner J et al (2014) Correlations between weather constellations and common vole (Microtus arvalis) densities identified by regression tree analysis. Basic Appl Ecol 15:75–84

    Article  Google Scholar 

  48. Imholt C, Reil D, Esther A, Jacob J (2013) Comparing key climatic pattern influencing different vole species in contrasting habitats. 11th International Mammalogical Congress, 11–16 August 2013. Belfast, S 45

  49. Ulrich RG, Schmidt S, Rosenfeld UM et al (2011) Hantavirus-Diagnostik in Reservoirwirten. LabLoeffler 4:5

    Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. J. Jacob, R.G. Ulrich, J. Freise und E. Schmolz geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jacob.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, J., Ulrich, R., Freise, J. et al. Monitoring von gesundheitsgefährdenden Nagetieren. Bundesgesundheitsbl. 57, 511–518 (2014). https://doi.org/10.1007/s00103-013-1924-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-013-1924-x

Schlüsselwörter

Keywords

Navigation