Skip to main content

Advertisement

Log in

Gefahren der Übertragung von Krankheitserregern durch Schildzecken in Deutschland

Threat of transmission of infectious pathogens by Ixodes ricinus ticks in Germany

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Durch Zecken übertragbare Krankheitserreger haben eine große Bedeutung für die Gesundheit der deutschen Bevölkerung. Viren wie das Frühsommer-Meningoenzephalitis-Virus (FSMEV), das Uukuniemi-Virus, das Tribec-Virus und das Eyach-Virus oder Bakterien wie Borrelien, Rickettsien, Francisella tularensis, Anaplasma phagocytophilum, Candidatus Neoehrlichia mikurensis (CNM) oder Coxiella burnetii wurden in der in Deutschland häufigsten Zecke, der Schildzecke Ixodes ricinus, nachgewiesen. Während allgemein bekannt ist, dass Zecken FSMEV und Borrelien übertragen können, ist selbst in Fachkreisen nicht bekannt, dass sie auch die anderen oben genannten Erreger tragen und ggf. entsprechende Infektionen verursachen können. Auch wenn in Deutschland in Einzelfällen Erkrankungen nach Übertragung der zuletzt genannten Erreger durch Zecken bereits beschrieben wurden, fehlen systematische Untersuchungen über ihr Vorkommen und ihre pathogenen Eigenschaften. So ist weitgehend unklar, welche Bedeutung neu entdeckte Infektionserreger wie Candidatus Neoehrlichia mikurensis oder auch lange bekannte Erreger wie Rickettsien spielen, die sich bisweilen in einem Fünftel der untersuchten Zecken nachweisen lassen. Ob Klimaänderungen zur weiteren Ausbreitung der Zecken und der Infektionserreger beitragen, bedarf ebenfalls weiterer Untersuchungen. Die Initiativen zur Schaffung natürlicher Lebensräume und der Trend zum häufigeren Aufenthalt in der Natur im Rahmen von Freizeitaktivitäten verstärkt die Gefahr, in Kontakt mit Zecken und ihren Infektionserregern zu kommen. Folglich kann in Zukunft mit dem Auftreten weiterer, bisher nicht bekannter Erkrankungen durch die Übertragung diese Erreger gerechnet werden.

Abstract

Tick-transmitted diseases are of great importance for the general health of the German population. Several viruses, such as tick-borne encephalitis virus (TBEV), Uukuniemi virus, Tribec virus, Eyach virus or bacteria, such as Borrelia, Rickettsiae, Francisella tularensis, Anaplasma phagocytophilum, Candidatus Neoehrlichia mikurensis (CNM) and Coxiella burnetii were detected in the most prominent tick in Germany, the hard tick Ixodes ricinus. While infections, such as TBE and Lyme disease are well known, other infections are hardly known even among experts. Although there have been a few descriptions of isolated cases in Germany, a systematic investigation regarding the distribution and the pathogenic potential of these pathogens is still lacking. In particular elderly people and people with underlying diseases seem to be mostly affected. The importance of new infectious disease agents, such as Candidatus Neoehrlichia mikurensis but also of long known pathogens, such as Rickettsiae still remains unclear, while some of them could be detected in 20 % of investigated ticks. Whether climate change contributes to the further distribution of these infectious agents remains unclear and requires further investigation. The increasing initiatives to create natural environments and the trend towards spending more time in nature for recreational activities will increase the danger of coming into contact with ticks and the respective infectious agents. Considering these circumstances an increase of diseases caused by these pathogens is to be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Scheid W, Ackermann R, Bloedhorn H et al (1964) Untersuchungen über das Vorkommen der Zentraleuropäischen Enzephalitis in Süddeutschland. Dtsch Med Wochenschr 89:2313–2317

    Article  PubMed  CAS  Google Scholar 

  2. Kaiser R (1999) The clinical and epidemiological profile of tick-borne encephalitis in southern Germany 1994–98: a prospective study of 656 patients. Brain 122:2067–2078

    Article  PubMed  Google Scholar 

  3. Libikova H, Rehaccek J, Gresikova M et al (1964). Cytopathic viruses isolated from Ixodes ricinus ticks in Czechoslovakia, Acta Virol 8:96

  4. Dobler G, Wölfel R, Schmuser H et al (2006) Seroprevalence of tick-borne and mosquito-borne arboviruses in European brown hares in Northern and Western Germany. Int J Med Microbiol 296(Suppl 40):80–83

    Article  PubMed  Google Scholar 

  5. Malkova D, Holubova J, Kolman JM et al (1980) Antibodies against some arboviruses in persons with various neuropathies. Acta Virol 24:298

    PubMed  CAS  Google Scholar 

  6. Rhese-Küpper B, Casals J, Rhese E, Ackermann R (1976) Eyach – an arthropod-borne virus related to Colorado tick fever virus in Federal Republic of Germany. Acta Virol 20:339–344

    Google Scholar 

  7. Chastel C, Main AJ, Couatar-Manac’HA et al (1984) Isolation of Eyach virus (Reoviridae, Colorado tick fever group) from Ixodes ricinus and Ixodes ventalloi ticks in France. Arch Virol 82:161–171

    Article  PubMed  CAS  Google Scholar 

  8. Hassler D, Oehme R, Kimmig P, Dobler G (2003) Eyach Virus: Erstmaliger Nachweis aus Zecken nach mehr als 25 Jahren in Südwest-Deutschland. Dtsch Med Wochenschr 128(37):1874

    PubMed  Google Scholar 

  9. Chastel C (1998) Erve and Eyach: two viruses isolated in France, neuropathogenic for man and widely distributes in Western Europe. Bull Acad Natl Med 182:801–810

    PubMed  CAS  Google Scholar 

  10. Oker-Blom N, Salminen A, Brummer-Korvenkontio M et al (1964) Isolation of some viruses other than typical tick-borne encephalitis virus from Ixodes ricinus ticks in Finland. Ann Med Exp Biol Fenn 42:109–112

    PubMed  CAS  Google Scholar 

  11. Süss J, Schrader C (2004) Durch Zecken übertragene humanpathogene und bisher als apathogen geltende Mikroorganismen in Europa. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 47:392–404

    Article  Google Scholar 

  12. Wössner R, Grauer MT, Langenbach J et al (2000) The Erve virus: possible mode of transmission and reservoir. Infection 28:164–166

    Article  Google Scholar 

  13. Treib J, Dobler G, Haass A et al (1997) Thunderclap headache caused by Erve virus. Neurology 50:509–511

    Article  Google Scholar 

  14. Fingerle V, Schulte-Spechtel UC, Ruzic-Sabljic E et al (2008) Epidemiological aspects and molecular characterization of Borrelia burgdorferi s.l. from southern Germany with special respect to the new species Borrelia spielmanii sp. nov. Int J Med Microbiol 298:279–290

    Article  PubMed  CAS  Google Scholar 

  15. Stanek G, Fingerle V, Hunfeld KP et al (2011) Lyme borreliosis: clinical case definitions for diagnosis and management in Europe. Clin Microbiol Infect 17:69–79

    Article  PubMed  CAS  Google Scholar 

  16. Huppertz HI, Bohme M, Standaert SM et al (1999) Incidence of Lyme borreliosis in the Wurzburg region of Germany. Eur J Clin Microbiol Infect Dis 18:697–703

    Article  PubMed  CAS  Google Scholar 

  17. Muller I, Freitag MH, Poggensee G et al (2012) Evaluating frequency, diagnostic quality, and cost of Lyme borreliosis testing in Germany: a retrospective model analysis. Clin Dev Immunol 59:5427

    Google Scholar 

  18. RKI (2010) Lyme-Borreliose: Analyse der gemeldeten Erkrankungsfälle der Jahre 2007 bis 2009 aus den sechs östlichen Bundesländern. Epidemiol Bull 12:101–107

    Google Scholar 

  19. Platonov AE, Karan LS, Kolyasnikova NM et al (2011) Humans infected with the relapsing fever spirochete Borrelia miyamotoi, Russia. Emerg Infect Dis 17:1816–1823

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Ellis J, Oyston PC, Green M, Titball RW (2002) Tularemia. Clin Microbiol Rev 15:631–646

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kaysser P, Seibold E, Mätz-Rensing K et al (2008) Re-emergence of tularemia in Germany: presence of Francisella tularensis in different rodent species in endemic areas. BMC Infect Dis 17:157

    Article  Google Scholar 

  22. Gehringer H, Schacht E, Maylaender N et al (2013) Presence of an emerging subclone of Francisella tularensis holarctica in Ixodes ricinus ticks from south-western Germany. Ticks Tick Borne Dis 4:93–100

    Article  PubMed  Google Scholar 

  23. Franke J, Fritzsch J, Tomaso H et al (2010) Coexistence of pathogens in host-seeking and feeding ticks within a single natural habitat in Central Germany. Appl Environ Microbiol 76:6829–6836

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Müller W, Hotzel H, Otto P et al (2013) German Francisella tularensis isolates from European brown hares (Lepus europaeus) reveal genetic and phenotypic diversity. BMC Microbiol 13:61

    Article  PubMed Central  PubMed  Google Scholar 

  25. Široký P, Kubelová M, Modrý D et al (2010) Tortoise tick Hyalomma aegyptium as long term carrier of Q fever agent Coxiella burnetii-evidence from experimental infection. Parasitol Res 107:1515–1520

    Article  PubMed  Google Scholar 

  26. Samuel JE, Frazier ME, Mallavia LP (1985) Correlation of plasmid type and disease caused by Coxiella burnetii. Infect Immun 49(3):775–779

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Sting R, Breitling N, Oehme R, Kimmig P (2004) Studies on the prevalence of Coxiella burnetii in sheep and ticks of the genus Dermacentor in Baden-Württemberg. Dtsch Tierarztl Wochenschr 111(10):390–394

    PubMed  CAS  Google Scholar 

  28. Sprong H, Tijsse-Klasen E, Langelaar M et al (2012) Prevalence of Coxiella burnetii in ticks after a large outbreak of Q fever. Zoonoses Public Health 59(1):69–75

    Article  PubMed  CAS  Google Scholar 

  29. Dobler G, Pfeffer M (2012) Spotted fever rickettsiae and rickettsioses in Germany. In: Mehlhorn H (Hrsg) Arthropods as vectors of emerging diseases. Parasitol Res Monographs 3:361–376

    Article  Google Scholar 

  30. Oteo JA, Portillo A (2012) Tick-borne rickettsioses in Europe. Ticks Tick Borne Dis 3:271–278

    Article  PubMed  Google Scholar 

  31. Nilsson K, Wallménius K, Hartwig S et al (2013) Bell’s palsy and sudden deafness associated with Rickettsia spp. infection in Sweden. A retrospective and prospective serological survey including PCR findings. Eur J Neurol. doi:10.1111/ene.12218 [Epub ahead of print]

  32. Dautel H, Dippel C, Oehme R et al (2006) Evidence for an increased geographical distribution of Dermacentor reticulatus in Germany and detection of Rickettsia sp. RpA4. Int J Med Microbiol 296(40):149–156

    Article  PubMed  Google Scholar 

  33. Madeddu G, Mancini F, Caddeo A et al (2012) Rickettsia monacensis as cause of Mediterranean spotted fever-like illness, Italy. Emerg Infect Dis 18(4):702–704

    Article  PubMed Central  PubMed  Google Scholar 

  34. Silaghi C, Woll D, Hamel D et al (2012) Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents – analyzing the host-pathogen-vector interface in a metropolitan area. Parasit Vectors 5:191

    Article  PubMed Central  PubMed  Google Scholar 

  35. Walder G, Fuchs D, Sarcletti M et al (2006) Human granulocytic anaplasmosis in Austria: epidemiological, clinical, and laboratory findings in five consecutive patients from Tyrol, Austria. Int J Med Microbiol 296(40):297–301

    Article  PubMed  Google Scholar 

  36. Overzier E, Pfister K, Herb I et al (2013) Detection of tick-borne pathogens in roe deer (Capreolus capreolus), in questing ticks (Ixodes ricinus), and in ticks infesting roe deer in southern Germany. Ticks Tick Borne Dis 4:320–328

    Article  PubMed  Google Scholar 

  37. Schouls LM, Van De Pol I, Rijpkema SG, Schot CS (1999) Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. J Clin Microbiol 37:2215–2222

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Sanogo YO, Parola P, Shpynov S et al (2003) Genetic diversity of bacterial agents detected in ticks removed from asymptomatic patients in northeastern Italy. Ann N Y Acad Sci 990:182–190

    Article  PubMed  CAS  Google Scholar 

  39. Loewenich FD von, Baumgarten BU, Schröppel K et al (2003) High diversity of ankA sequences of Anaplasma phagocytophilum among Ixodes ricinus ticks in Germany. J Clin Microbiol 41:5033–5040

    Article  CAS  Google Scholar 

  40. Kawahara M, Rikihisa Y, Isogai E et al (2004) Ultrastructure and phylogenetic analysis of „Candidatus Neoehrlichia mikurensis“ in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. Int J Syst Evol Microbiol 54:1837–1843

    Article  PubMed  CAS  Google Scholar 

  41. Jahfari S, Fonville M, Hengeveld P et al (2012) Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe. Parasit Vectors 5:74

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Richter D, Matuschka FR (2012) „Candidatus Neoehrlichia mikurensis“, Anaplasma phagocytophilum, and lyme disease spirochetes in questing european vector ticks and in feeding ticks removed from people. J Clin Microbiol 50:943–947

    Article  PubMed Central  PubMed  Google Scholar 

  43. Li H, Jiang JF, Liu W et al (2012) Human infection with Candidatus Neoehrlichia mikurensis, China. Emerg Infect Dis 18:1636–1638

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Maurer FP, Keller PM, Beuret C et al (2013) Close geographic association of human neoehrlichiosis and tick populations carrying Candidatus Neoehrlichia mikurensis in Eastern Switzerland. J Clin Microbiol 51:169–176

    Article  PubMed Central  PubMed  Google Scholar 

  45. Skrabalo Z, Deanovic Z (1957) Piroplasmosis in man; report of a case. Doc Med Geogr Trop 9:11–16

    PubMed  CAS  Google Scholar 

  46. Spielman A (1976) Human babesiosis on Nantucket Island: transmission by nymphal Ixodes ticks. Am J Trop Med Hyg 25:784–787

    PubMed  CAS  Google Scholar 

  47. El-Bahnasawy MM, Khalil HH, Morsy TA (2011) Babesiosis in an Egyptian boy aquired from pet dog, and a general review. J Egypt Soc Parasitol 41:99–108

    PubMed  Google Scholar 

  48. Senanayake SN, Paparini A, Latimer M et al (2012) First report of human babesiosis in Australia. Med J Aust 196(5):350–352

    Article  PubMed  Google Scholar 

  49. Hildebrandt A, Hunfeld KP, Baier M et al (2007) First confirmed autochthonous case of human Babesia microti infection in Europe. Eur J Clin Microbiol Infect Dis 26:595–601

    Article  PubMed  CAS  Google Scholar 

  50. Schmidt K, Dressel KM, Niedrig M et al (2013) Public health and vector-borne diseases – a new concept for risk governance. Zoonoses Public Health 60(8):528–538

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Für die Anregungen und Unterstützung bei diesem Beitrag möchten wir uns recht herzlich bei Prof. Jabbar Ahmed, Borstel, und Prof. Heiner Neubauer, Jena, bedanken.

Einhaltung ethischer Richtlinien

Interessenkonflikt. G. Dobler, V. Fingerle, P. Hagedorn, M. Pfeffer, C. Silaghi, H. Tomaso, K. Henning und M. Niedrig geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Niedrig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobler, G., Fingerle, V., Hagedorn, P. et al. Gefahren der Übertragung von Krankheitserregern durch Schildzecken in Deutschland. Bundesgesundheitsbl. 57, 541–548 (2014). https://doi.org/10.1007/s00103-013-1921-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-013-1921-0

Schlüsselwörter

Keywords

Navigation