Skip to main content
Log in

Gesundheitsschädlinge

Arthropoden und Nagetiere als Krankheitsverursacher sowie Überträger und Reservoire von Krankheitserregern

Public health pests

Arthropods and rodents as causative disease agents as well as reservoirs and vectors of pathogens

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Infektionskrankheiten stellen die derzeit häufigste Todesursache weltweit dar. In etwa 50 % der Fälle handelt es sich um Infektionen mit Erregern von Zoonosen, die vom Tier auf den Menschen übertragen werden können. Bei den Krankheiten, die derzeit als sich ausbreitend (= emerging) definiert werden, sind wiederum 73 % Zoonosen. In Mitteleuropa besitzen Schildzecken die größte Bedeutung als Vektoren für Krankheitserreger. Dabei ist die Lyme-Borreliose mit geschätzten 60.000 bis 214.000 Fällen pro Jahr die häufigste durch Erreger in Zecken übertragene Infektionskrankheit in Deutschland. Kontinuierlich werden hierzulande neue, bislang unbekannte Infektionserreger in heimischen Vektoren entdeckt, aber auch neu eingewanderte oder eingeschleppte Vektoren bzw. Infektionserreger nachgewiesen. Fünf Stechmückenarten aus der Gattung Aedes breiten sich derzeit in Europa aus, die in den letzten 5 Jahren in Südeuropa mehrere autochthone Epidemien von Dengue- und Chikungunyafieber verursachten. Von diesen treten 2, die Asiatische Tigermücke (Ae.  albopictus) im Süden und die Japanische Buschmücke (Ae.  japonicus) mittlerweile auch in der Mitte Deutschlands auf. Gemäß Infektionsschutzgesetz (IfSG) werden innerhalb der Gruppe der Gesundheitsschädlinge lediglich Vektoren berücksichtigt, die über den Stechakt Erreger aktiv übertragen oder Keime passiv verschleppen. Der Einsatz von Mitteln und Verfahren zur Infektionskettenunterbrechung nach § 18 IfSG erstreckt sich bislang nur auf Gesundheitsschädlinge im häuslichen Bereich, bei Wanderratten zusätzlich auf die Kanalisation. Freilandvektoren wie Zecken und Stechmücken werden nach IfSG derzeit nicht berücksichtigt. Daher sind neben gesetzlichen Anpassungen detaillierte Analysen zu Vektorkartierung und eine entsprechende Erregersurveillance erforderlich.

Abstract

Globally, infectious diseases pose the most important cause of death. Among known human pathogenic diseases, approximately 50 % are zoonoses. When considering emerging infectious diseases separately 73 % currently belong to the group of zoonoses. In Central Europe, hard ticks show by far the biggest potential as vectors of agents of human disease. Lyme borreliosis, showing an estimated annual incidence between 60,000 and 214,000 cases is by far the most frequent tick-borne disease in Germany. Continually, formerly unknown disease agents could be discovered in endemic vector species. Additionally, introduction of new arthropod vectors and/or agents of disease occur constantly. Recently, five mosquito species of the genus Aedes have been newly introduced to Europe where they are currently spreading in different regions. Uncommon autochthonous transmission of dengue and chikungunya fever viruses in Southern Europe could be directly linked to these vector species and of these Ae. albopictus and Ae. japonicus are currently reported to occur in Germany. The German Protection against Infection Act only covers the control of public health pests which are either active hematophagous vectors or mechanical transmitters of agents of diseases. Use of officially recommended biocidal products aiming to interrupt transmission cycles of vector-borne diseases, is confined to infested buildings only, including sewage systems in the case of Norway rat control. Outdoor vectors, such as hard ticks and mosquitoes, are currently not taken into consideration. Additionally, adjustments of national public health regulations, detailed arthropod vector and rodent reservoir mapping, including surveillance of vector-borne disease agents, are necessary in order to mitigate future disease risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Faulde M, Hoffmann G (2001) Vorkommen und Verhütung vektorassoziierter Erkrankungen des Menschen in Deutschland unter Berücksichtigung zoonotischer Aspekte. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 44:116–136

    Article  Google Scholar 

  2. WHO (2008) World Health Statistics 2008. World Health Organization, Geneva. http://who.int/whosis/whostat/EN_WHS08_Full.pdf (Zugegriffen: 19. Aug. 2013)

  3. Lederberg J, Shope RE, Oaks SC (1992) Emerging infections: microbial threats to health in the United States. National Academic Press, Washington D.C.

  4. Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature 451:21

    Article  CAS  Google Scholar 

  5. Poggensee G, Fingerle V, Hunfeld K-P et al (2008) Lyme-borreliosis: research gaps and research approaches. Results from an interdisciplinary expert meeting at the Robert Koch-Institute. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 51:1329–1339

    Article  CAS  Google Scholar 

  6. Müller I, Freitag MH, Poggensee G et al (2012) Evaluating frequency, diagnostic quality, and cost of Lyme borreliosis testing in Germany: a retrospective model analysis. Clin Dev Immunol 595427

  7. Robert Koch Institut (2013) Aktuelle Statistik meldepflichtiger Infektionskrankheiten, Deutschland. Epidemiol Bull 19:176

    Google Scholar 

  8. Gratz N (1999) Emerging and resurging vector-borne diseases. Annu Rev Entomol 44:51–75

    Article  PubMed  CAS  Google Scholar 

  9. Braks M, Giessen J van der, Kretzschmar M et al (2011) Towards an integrated approach in surveillance of vector-borne diseases in Europe. Parasit Vectors 4:192–203

    Article  PubMed Central  PubMed  Google Scholar 

  10. Ruf BR, Kern WV (1999) Infektiologie. Internist 40:369–380

    Article  PubMed  CAS  Google Scholar 

  11. Salzberger B, Franzen C, Fätkenheuer G (2000) Update Infektiologie. Teil I: Epidemiologie. Med Klin 95:314–320

    Article  CAS  Google Scholar 

  12. Enserink M (2000) Malaysian researchers trace Nipah virus outbreak to bats. Science 289:518–519

    Article  PubMed  CAS  Google Scholar 

  13. Platonov AE, Karan LS, Kolyasnikova NM et al (2011) Humans infected with relapsing fever spirochaete Borrelia miyamotoi, Russia. Emerg Infect Dis 17:1816–1823

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Krause PJ, Narasimhan S, Wormser GP et al (2013) Human Borrelia miyamotoi infection in the United States. N Engl J Med 368:291–293

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Faulde M, Spiesberger M (2013) Role of the moth fly Clogmia albipunctata (Diptera: Psychodinae) as a mechanical vector of bacterial pathogens in hospitals, Germany. J Hosp Infect 83:51–60

    Article  PubMed  CAS  Google Scholar 

  16. Russell RC, Otranto D, Wall RL (2013) The encyclopaedia of medical and veterinary entomology. CABI, Wallingford

  17. Gothe D, Nertz AWH (1991) Tick paralyses, pathogenesis and etiology. In: Harris KF (Hrsg) Advances in disease vector research, Bd 8. Springer, New York, S 177–204

  18. Krieg A, Franz JM (1989) Lehrbuch der biologischen Schädlingsbekämpfung. Paul Parey, Berlin

  19. Moneo I, Vega JM, Caballero ML et al (2003) Isolation and characterization of Tha p 1, a major allergen from the pine processionary caterpillar Thaumatopoea pityocampa. Allergy 58:34–37

    Article  PubMed  CAS  Google Scholar 

  20. Faulde M, Dötsch W (2005) Toxisch-irritative Dermatitis durch Prozessionsspinnerraupen nach Portugalaufenthalt. Allergologie 28:290–295

    Article  Google Scholar 

  21. Burgess NRH (1981) John Hull Grundy’s arthropods of medical importance. Curwen Press, London

  22. Hirsch T, Stappenbeck C, Neumeister V et al (2000) Exposure and allergic sensitation to cockroach allergen in East Germany. Clin Exp Allergy 30:529–537

    Article  PubMed  CAS  Google Scholar 

  23. Oldenburg M, Latza U, Baur X (2008) Occupational health risks due to shipboard cockroaches. Int Arch Occup Environ Health 81:727–734

    Article  PubMed  CAS  Google Scholar 

  24. Crowther D, Wilkinson T (2008) House dust mites. In: Bonnefoy X, Kampen H, Sweeney K (Hrsg) Urban Pests and Health. World Health Organization, Geneva, S 85–129

  25. Faulde M (2002) Vorkommen und Epidemiologie vektorassoziierter Infektionserkrankungen in Mitteleuropa. U-Books, Augsburg

  26. Cochran DG (1999) Cockroaches: their biology, distribution and control. World Health Organization, Geneva. WHO/CDS/CPC/WHOPES/99.3

  27. Förster M, Sievert K, Messler S et al (2009) Comprehensive study on the occurrence and distribution of pathogenic microorganisms carried by synanthropic flies caught at different rural locations in Germany. J Med Entomol 46:1164–1166

    Article  PubMed  Google Scholar 

  28. Rust MK (2008) Cockroaches. In: Bonnefoy X, Kampen H, Sweeney K (Hrsg) Urban pests and health. World Health Organization, Geneva, S 53–84

  29. Tilahun B, Worku B, Tachbele E et al (2012) High load of multi-drug resistant nosocomial neonatal pathogens carried by cockroaches in a neonatal intensive care unit at Tikur Anbessa specialized hospital, Addis Ababa, Ethiopia. Antimicrob Resist Infect Control 16:12

    Article  Google Scholar 

  30. Rahuma N, Ghenghesh KS, Ben Aissa R, Elamaari A (2005) Carriage by the housefly (Musca domestica) of multiple-antibiotic-resistant bacteria that are potentially pathogenic to humans, in hospital and other urban environments in Misurata, Libya. Ann Trop Med Parasitol 99:795–802

    Article  PubMed  CAS  Google Scholar 

  31. Boulesteix G, Le Dantec P, Chevalier B et al (2005) Role of Musca domestica in the transmission of multiresistant bacteria in the centres of intensive care setting in sub-Saharan Africa. Ann Fr Anesth Reanim 24:361–365

    Article  PubMed  CAS  Google Scholar 

  32. Fotedar R, Banerjee U, Samantray JC, Shriniwas (1992) Vector potential of hospital houseflies with special reference to Klebsiella species. Epidemiol Infect 109:143–147

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Goossens H (2005) European status of resistance in nosocomial infections. Chemotherapy 51:177–181

    Article  PubMed  CAS  Google Scholar 

  34. Hogsette JR, Amendt J (2008) Flies. In: Bonnefoy X, Kampen H, Sweeney K (Hrsg) Urban pests and health. World Health Organization, Geneva, S 175–208

  35. Oi DH (2008) Pharaoh ants and fire ants. In: Bonnefoy X, Kampen H, Sweeney K (Hrsg) Urban pests and health. World Health Organization, Geneva, S 175–208

  36. Barthel TF, Freise JF (2009) Wem gehören die Schaben? Amtstierärztlicher Dienst Lebensmittelkontrolle 16:172–175

    Google Scholar 

  37. Faulde M, Fock R, Hoffmann G, Pietsch M (2002) Tiere als Vektoren und Reservoire von Erregern importierter lebensbedrohender Infektionskrankheiten. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 45:139–151

    Article  Google Scholar 

  38. Battersby S, Hirschborn RB, Amman BR (2008) Commensal rodents. In: Bonnefoy X, Kampen H, Sweeney K (Hrsg) Urban pests and health. World Health Organization, Geneva, S 53–84

  39. Faulde M (2004) Ratten und Mäuse – unterschätzte Überträger und Reservoire gefährlicher Infektionskrankheiten. Hyg Med 29:206–216

    Google Scholar 

  40. Schaffner F, Bellini R, Petric D et al (2013) Development of guidelines for the surveillance of invasive mosquitoes in Europe. Parasit Vectors 6:209

    Article  PubMed Central  PubMed  Google Scholar 

  41. Poletti P, Messeri G, Ajelli M et al (2011) Transmission potential of chikungunya virus and control measures: the case of Italy. PLoS One 6:e18860

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Gjenero-Margan I, Aleraj B, Krajcar D et al (2011) Autochthonous dengue fever in Croatia, August–September 2010. Euro Surveill 16(9):pii=19805

    Google Scholar 

  43. Sousa CA, Clairouin M, Seixas G et al (2012) Ongoing outbreak of dengue type I in the autonomous region of Madeira, Portugal: preliminary report. Euro Surveill 17(49):pii=20333

    Google Scholar 

  44. Tomasello D, Schlagenauf P (2013) Chikungunya and dengue autochthonous cases in Europe, 2007–2012. Travel Med Infect Dis pii:S1477-8939(13)00128-2, doi:10.1016/j.tmaid.2013.07.006

    Google Scholar 

  45. Kampen H, Zielke D, Werner D (2012) A new focus of Aedes japonicus japonicus (Theobald, 1901) (Diptera, Culicidae) distribution in Western Germany: rapid spread or a further introduction event? Parasit Vectors 5:284

    Article  PubMed Central  PubMed  Google Scholar 

  46. Werner D, Kronefeld M, Schaffner F, Kampen H (2012) Two invasive mosquito species, Aedes albopictus and Aedes japonicus japonicus, trapped in south-west Germany, July to August 2011. Euro Surveill 17:pii=20067

    Google Scholar 

  47. Becker N, Geier M, Balczun C et al (2013) Repeated introduction of Aedes albopictus into Germany, July to October 2012. Parasitol Res 112:1787–1790

    Article  PubMed  Google Scholar 

  48. Huber K, Pluskota B, Jöst A et al (2012) Status of the invasive species Aedes japonicus japonicus (Diptera: Culicidae) in southwest Germany in 2011. J Vector Ecol 37:462–465

    Article  PubMed  Google Scholar 

  49. Turell MJ, Byrd BD, Harrison BA (2013) Potential for populations of Aedes j. japonicus to transmit Rift Valley fever virus in the USA. J Am Mosq Control Assoc 29:133–137

    Article  PubMed  CAS  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Faulde und J. Freise geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Faulde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faulde, M., Freise, J. Gesundheitsschädlinge. Bundesgesundheitsbl. 57, 495–503 (2014). https://doi.org/10.1007/s00103-013-1919-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-013-1919-7

Schlüsselwörter

Keywords

Navigation