Advertisement

Statistische Methoden der kleinräumigen Versorgungsforschung

  • L. SundmacherEmail author
  • N. Götz
  • V. Vogt
Leitthema

Zusammenfassung

Die akkurate Modellierung kleinräumiger Daten ist eine wesentliche Herausforderung in der Versorgungsforschung. Der vorliegende Beitrag liefert einen Einblick in aktuelle statistische Methoden der kleinräumigen Versorgungsforschung unter Berücksichtigung räumlicher Abhängigkeiten. Räumliche Abhängigkeiten werden durch sog. Spillover-Effekte, z. B. durch Kommunikation zwischen Ärzten oder Patienten in benachbarten Kreisen und nicht beobachtete räumliche Einflussfaktoren, verursacht. Eine nicht angemessene Modellierung dieser Abhängigkeiten zwischen den Beobachtungen kann die Ergebnisse von Analysen verzerren. In der Regressionsgleichung können räumliche Abhängigkeiten über zusätzliche Terme, sog. Spatial Lags oder Spatial Errors, berücksichtigt werden. Anhand einer Beispielstudie wird demonstriert, dass bei fehlender Berücksichtigung die Koeffizienten und/oder die Standardfehler der Schätzung verzerrt sein können. In der kleinräumigen Versorgungsforschung sollte daher – wenn möglich – auf räumliche Autokorrelation in den Daten getestet und das Modell entsprechend adjustiert werden.

Schlüsselwörter

Regionale Variation Räumliche Analysen Versorgungsforschung 

Statistical methods for research on regional health-care services

Abstract

Accurate modeling of spatial dependencies between observations is a significant challenge in research on regional health-care services. This article provides insight into current methods of modeling relationships in regional health-care service research, with consideration of spatial dependencies. Spatial dependencies may be triggered by spillover effects between neighboring regions and spatially distributed differences in – e.g., morbidity – which are not observable. If not considered in the model, the results of the analyses may be biased. Spatial dependencies can be added to the regression model as a spatial lag or a spatial error term. Using an example study, we illustrate that failing to consider spatial autocorrelation may lead to biased coefficients and/or standard errors. Research on regional health-care services should, therefore, if possible, test for spatial autocorrelation in the data and adjust the model accordingly.

Keywords

Regional variation Spatial analysis Health Services Research 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. L. Sundmacher, N. Götz und V. Vogt geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Purdy S, Griffin T, Salisbury C, Sharp C (2009) Ambulatory care sensitive conditions: terminology and disease coding need to be more specific to aid policy makers and clinicians. Public Health 123:169–173PubMedCrossRefGoogle Scholar
  2. 2.
    Fahrmeir L, Kneib T, Lang S (2007) Regression: Modelle, Methoden und Anwendungen. Springer, BerlinGoogle Scholar
  3. 3.
    Gatzweiler H-P, Milbert A (2006) Regionale Disparitäten in den Erwerbsmöglichkeiten. Inf Raumentwickl 6:317–324Google Scholar
  4. 4.
    Tobler W (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46(2):234–240CrossRefGoogle Scholar
  5. 5.
    Anselin L (1988) Spatial econometrics: methods and models. Kluwer Academic, DordrechtGoogle Scholar
  6. 6.
    Greenland S, Robin JM (1991) Empirical-Bayes adjustment for multiple comparisons are sometimes useful. Epidemiology 2:244–251PubMedCrossRefGoogle Scholar
  7. 7.
    Anselin L (2001) Rao’s score test in spatial econometrics. J Stat Plan Inference 97:113–139CrossRefGoogle Scholar
  8. 8.
    Anselin L, Bera AK, Florax R, Yoon MJ (1996) Simple diagnostic tests for spatial dependence. Reg Sci Urban Econ 26:77–104CrossRefGoogle Scholar
  9. 9.
    Elhorst JP (2010) Applied spatial econometrics: raising the bar. Spat Econ Anal 5(1):9–28CrossRefGoogle Scholar
  10. 10.
    Kelejian HH, Prucha IR (1998) A generalized spatial two-stage least squares procedure for estimation a spatial autoregressive model with autoregressive disturbances. J Real Estate Finance Econ 17:99–121CrossRefGoogle Scholar
  11. 11.
    LeSage JP, Pace RK (2009) Introduction to spatial econometrics. Statistics, textbooks and monographs. CRC Press, Boca RatonGoogle Scholar
  12. 12.
    Ward MD, Gleditsch KS (2008) Spatial regression models. Sage Publications, Thousand OaksGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Gesundheitsökonomisches Zentrum BerlinTechnische Universität BerlinBerlinDeutschland
  2. 2.Fachbereich Health Services ManagementLudwig-Maximilians-UniversitätMünchenDeutschland

Personalised recommendations