Advertisement

Intersexualität und Differences of Sex Development (DSD)

Grundlagen, Diagnostik und Betreuungsansätze
  • P.-M. Holterhus
Leitthema

Zusammenfassung

Intersexualität bezeichnet eine angeborene Inkongruenz von chromosomalem Geschlecht, Keimdrüsen und genitalem Phänotyp. Eine typische klinische Situation, wie sich Intersexualität präsentiert, ist das uneindeutige Genitale bei Geburt. Ursächlich sind chromosomale, genetische und hormonelle Faktoren. Diagnostik, Beratung und Therapie sollten durch ein erfahrenes multidisziplinäres Team durchgeführt werden. Dabei stehen medizinische, aber auch psychologische, soziale und ethische Belange im Fokus. Intersexualität wird in der internationalen Literatur als „Disorders of Sex Development“ („DSD“) bezeichnet. Um zu verdeutlichen, dass aus Patientensicht nicht notwendigerweise bzw. nicht in allen Aspekten ein Krankheitswert besteht, wird von einigen Autoren von „Differences of Sex Development“ gesprochen.

Schlüsselwörter

Intersexualität Intersex Disorders of Sex Development Differences of Sex Development DSD 

Intersex and differences of sex development

Background, diagnostics, and concepts of care

Abstract

Intersex is an inherited incongruence of chromosomal, gonadal, and genital sexual characteristics. A typical clinical situation of intersex is the ambiguous genitalia in the newborn. Diagnostics, counseling, and therapy should be offered by specialized multidisciplinary health-care teams. The focus is not only on medical issues but also on psychological, social, and ethical aspects. In the international literature, intersex is now termed “disorders of sex development” (DSD). Alternatively, some authors use “differences of sex development” to underline that patients do not necessarily feel they have a “disorder” but rather a “difference” of sex development compared with normal sex development.

Keywords

Intersexuality Intersex Disorders of sex development Differences of sex development DSD 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. P.-M. Holterhus gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Thyen U, Lanz K, Holterhus PM, Hiort O (2006) Epidemiology and initial management of ambiguous genitalia at birth in Germany. Horm Res 66:195–203PubMedCrossRefGoogle Scholar
  2. 2.
    Hughes IA, Houk C, Ahmed SF et al (2006) Consensus statement on management of intersex disorders. Arch Dis Child 91:554–563PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Wiesemann C, Ude-Koeller S, Sinnecker GH, Thyen U (2010) Ethical principles and recommendations for the medical management of differences of sex development (DSD)/intersex in children and adolescents. Eur J Pediatr 169:671–679PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Deutscher Ethikrat (2013) http://www.ethikrat.org/intersexualitaet (Zugegriffen: 22.01.2013)Google Scholar
  5. 5.
    Gillam LH, Hewitt JK, Warne GL (2010) Ethical principles for the management of infants with disorders of sex development. Horm Res Paediatr 74:412–418PubMedCrossRefGoogle Scholar
  6. 6.
    Sinclair AH, Berta P, Palmer MS et al (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240–244PubMedCrossRefGoogle Scholar
  7. 7.
    Ono M, Harley VR (2012) Disorders of sex development: new genes, new concepts. Nat Rev Endocrinol 9:79–91PubMedCrossRefGoogle Scholar
  8. 8.
    Hiort O, Holterhus PM (2000) The molecular basis of male sexual differentiation. Eur J Endocrinol 142:101–110PubMedCrossRefGoogle Scholar
  9. 9.
    Achermann JC, Hughes IA (2008) Disorders of sex development. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen PR (Hrsg) Williams textbook of endocrinology. Saunders Elsevier, Philadelphia, S 783–848Google Scholar
  10. 10.
    Döhler KD, Coquelin A, Davis F et al (1982) Differentiation of the sexually dimorphic nucleus in the preoptic area of the rat brain is determined by the perinatal hormone environment. Neurosci Lett 13:295–298CrossRefGoogle Scholar
  11. 11.
    Hofman MA, Swaab DF (1991) Sexual dimorphism of the human brain: myth and reality. Exp Clin Endocrinol 98:161–170PubMedCrossRefGoogle Scholar
  12. 12.
    Jürgensen M, Hiort O, Holterhus PM, Thyen U (2007) Gender role behavior in children with XY karyotype and disorders of sex development. Horm Behav 51:443–453PubMedCrossRefGoogle Scholar
  13. 13.
    Holterhus PM, Deppe U, Werner R et al (2007) Intrinsic androgen-dependent gene expression patterns revealed by comparison of genital fibroblasts from normal males and individuals with complete and partial androgen insensitivity syndrome. BMC Genomics 18:376–390CrossRefGoogle Scholar
  14. 14.
    Holterhus PM, Bebermeier JH, Werner R et al (2009) Disorders of sex development expose transcriptional autonomy of genetic sex and androgen-programmed hormonal sex in human blood leukocytes. BMC Genomics 10:292PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Berenbaum SA (1999) Effects of early androgens on sex-typed activities and interests in adolescents with congenital adrenal hyperplasia. Horm Behav 35:102–110PubMedCrossRefGoogle Scholar
  16. 16.
    Hines M, Ahmed SF, Hughes IA (2003) Psychological outcomes and gender-related development in complete androgen insensitivity syndrome. Arch Sex Behav 32:93–101PubMedCrossRefGoogle Scholar
  17. 17.
    Cools M, Drop SL, Wolffenbuttel KP et al (2006) Germ cell tumors in the intersex gonad: old paths, new directions, moving frontiers. Endocr Rev 27:468–484PubMedCrossRefGoogle Scholar
  18. 18.
    Köhler B, Delezoide AL, Boizet-Bonhoure B et al (2007) Coexpression of Wilms‘ tumor suppressor 1 (WT1) and androgen receptor (AR) in the genital tract of human male embryos and regulation of AR promoter activity by WT1. J Mol Endocrinol 38:547–554PubMedCrossRefGoogle Scholar
  19. 19.
    Achermann JC, Ito M, Ito M et al (1999) A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 22:125–126PubMedCrossRefGoogle Scholar
  20. 20.
    Fukami M, Wada Y, Miyabayashi K et al (2006) CXorf6 is a causative gene for hypospadias. Nat Genet 38:1369–1371PubMedCrossRefGoogle Scholar
  21. 21.
    Quigley CA, De Bellis A, Marschke KB et al (1995) Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev 16:271–321PubMedGoogle Scholar
  22. 22.
    Sinnecker GH, Hiort O, Nitsche EM et al (1997) Functional assessment and clinical classification of androgen sensitivity in patients with mutations of the androgen receptor gene. German Collaborative Intersex Study Group. Eur J Pediatr 156:7–14PubMedCrossRefGoogle Scholar
  23. 23.
    Ahmed SF, Khwaja O, Hughes IA (2000) The role of a clinical score in the assessment of ambiguous genitalia. BJU Int 85:120–124PubMedCrossRefGoogle Scholar
  24. 24.
    Wünsch L, Holterhus PM, Wessel L, Hiort O (2012) Patients with disorders of sex development (DSD) at risk of gonadal tumour development: management based on laparoscopic biopsy and molecular diagnosis. BJU Int 110:E958–E965PubMedCrossRefGoogle Scholar
  25. 25.
    Kulle AE, Riepe FG, Melchior D et al (2010) A novel ultrapressure liquid chromatography tandem mass spectrometry method for the simultaneous determination of androstenedione, testosterone, and dihydrotestosterone in pediatric blood samples: age- and sex-specific reference data. J Clin Endocrinol Metab 95:2399–2409PubMedCrossRefGoogle Scholar
  26. 26.
    Kulle AE, Welzel M, Holterhus PM, Riepe FG (2013) Implementation of a liquid chromatography tandem mass spectrometry assay for eight adrenal C-21 steroids and pediatric reference data. Horm Res Paediatr 16:22–31CrossRefGoogle Scholar
  27. 27.
    Mendez JP, Schiavon R, Diaz-Cueto L et al (1998) A reliable endocrine test with human menopausal gonadotropins for diagnosis of true hermaphroditism in early infancy. J Clin Endocrinol Metab 83:3523–3526PubMedCrossRefGoogle Scholar
  28. 28.
    Bouvattier C, Carel JC, Lecointre C et al (2002) Postnatal changes of T, LH, and FSH in 46,XY infants with mutations in the AR gene. J Clin Endocrinol Metab 87:29–32PubMedCrossRefGoogle Scholar
  29. 29.
    Illig R, Tolksdorf M, Mürset G, Prader A (1975) LH and FSH response to synthetic LH-RH in children and adolescents with Turner’s and Klinefelter’s syndrome. Helv Paediatr Acta 30:221–231PubMedGoogle Scholar
  30. 30.
    Kubini K, Zachmann M, Albers N et al (2000) Basal inhibin B and the testosterone response to human chorionic gonadotropin correlate in prepubertal boys. J Clin Endocrinol Metab 85:134–138PubMedCrossRefGoogle Scholar
  31. 31.
    Rey RA, Belville C, Nihoul-Fékété C et al (1999) Evaluation of gonadal function in 107 intersex patients by means of serum antimüllerian hormone measurement. J Clin Endocrinol Metab 84:627–631PubMedCrossRefGoogle Scholar
  32. 32.
    Ledig S, Hiort O, Scherer G et al (2010) Array-CGH analysis in patients with syndromic and non-syndromic XY gonadal dysgenesis: evaluation of array CGH as diagnostic tool and search for new candidate loci. Hum Reprod 25:2637–2646PubMedCrossRefGoogle Scholar
  33. 33.
    White S, Ohnesorg T, Notini A et al (2011) Copy number variation in patients with disorders of sex development due to 46,XY gonadal. PLoS One 6:e17793PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Bals-Pratsch M, Schweikert HU, Nieschlag E (1990) Androgen receptor disorder in three brothers with bifid prepenile scrotum and hypospadias. Acta Endocrinol (Copenh) 123:271–276Google Scholar
  35. 35.
    Holterhus PM, Werner R, Hoppe U et al (2005) Molecular features and clinical phenotypes in androgen insensitivity syndrome in the absence and presence of androgen receptor gene mutations. J Mol Med 83:1005–1013PubMedCrossRefGoogle Scholar
  36. 36.
    Appari M, Werner R, Wünsch L et al (2009) Apolipoprotein D (APOD) is a putative biomarker of androgen receptor function in androgen insensitivity syndrome. J Mol Med 87:623–632PubMedCrossRefGoogle Scholar
  37. 37.
    Meyer-Bahlburg HF, Dolezal C, Baker SW et al (2004) Prenatal androgenization affects gender-related behavior but not gender identity in 5–12-year-old girls with congenital adrenal hyperplasia. Arch Sex Behav 33:97–104PubMedCrossRefGoogle Scholar
  38. 38.
    Cohen-Kettenis PT (2005) Gender change in 46,XY persons with 5alpha-reductase-2 deficiency and 17beta-hydroxysteroid dehydrogenase-3 deficiency. Arch Sex Behav 34:399–410PubMedCrossRefGoogle Scholar
  39. 39.
    Schönbucher V, Schweizer K, Rustige L et al (2012) Sexual quality of life of individuals with 46,XY disorders of sex development. J Sex Med 9:3154–3170PubMedCrossRefGoogle Scholar
  40. 40.
    Schweizer K, Brunner F, Schützmann K et al (2009) Gender identity and coping in female 46,XY adults with androgen biosynthesis deficiency (intersexuality/DSD). J Couns Psychol 56:189–201CrossRefGoogle Scholar
  41. 41.
    Hiort O, Danne T, Wabitsch M (2009) Pädiatrische Endokrinologie und Diabetologie. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  42. 42.
    Callens N, De Cuypere G, Wolffenbuttel KP et al (2012) Long-term psychosexual and anatomical outcome after vaginal dilation or vaginoplasty: a comparative study. J Sex Med 9:1842–1851PubMedCrossRefGoogle Scholar
  43. 43.
    Fagerholm R, Mattila AK, Roine RP et al (2012) Mental health and quality of life after feminizing genitoplasty. J Pediatr Surg 47:747–751PubMedCrossRefGoogle Scholar
  44. 44.
    Zwan YG van der, Janssen EH, Callens N et al (2013) Severity of virilization is associated with cosmetic appearance and sexual function in women with congenital adrenal hyperplasia: a cross-sectional study. J Sex Med 10:866–875PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Klinik für Allgemeine Pädiatrie, Bereich Pädiatrische Endokrinologie und DiabetologieChristian-Albrechts Universität zu Kiel (CAU), Hormonzentrum für Kinder und Jugendliche, Universitätsklinikum Schleswig-Holstein (UKSH), Campus KielKielDeutschland

Personalised recommendations