Skip to main content

Richtwerte für Naphthalin und Naphthalin-ähnliche Verbindungen in der Innenraumluft

Mitteilung der Ad-hoc-Arbeitsgruppe Innenraumrichtwerte der Kommission Innenraumlufthygiene und der Obersten Landesgesundheitsbehörden

Indoor air guide values for naphthalene and naphthalene-like compounds

Announcement of the German Ad-hoc Working Group on Indoor Guidelines of the Indoor Air Hygiene Committee and of the States’ Supreme Health Authorities

This is a preview of subscription content, access via your institution.

Abb. 1

Literatur

  1. 1.

    Sagunski H, Heger W (2004) Richtwerte für die Innenraumluft: Naphthalin. Bundesgesundheitsblatt 47:705–712

    CAS  Google Scholar 

  2. 2.

    EC (2008) Verordnung (EG) Nr. 1272/2008 des Europäischen Parlaments und des Rates vom 16. Dezember 2008 über die Einstufung, Kennzeichnung und Verpackung von Stoffen und Gemischen und zur Änderung und Aufhebung der Richtlinien 67/548/EWG und 1999/45/EG und zur Änderung der Verordnung (EG) Nr. 1907/2006. Amtsbl. Europ. Union vom 31.12.2008, L 353:1–1355

  3. 3.

    Ad-hoc-Arbeitsgruppe Innenraumrichtwerte (2012) Richtwerte für die Innenraumluft: erste Fortschreibung des Basisschemas. Bundesgesundheitsblatt 55:279–290

    Article  Google Scholar 

  4. 4.

    EC-JRC (2005) Critical appraisal of the setting and implementation of indoor exposure limits in the EU. The INDEX project. Final report. January 2005. European Commission, Joint Research Centre, Ispra

  5. 5.

    RIVM-NL (2007) Health-based guideline values for the indoor environment. RIVM report 609021044:95–96

    Google Scholar 

  6. 6.

    AFSSET (2009) Valeurs guides de qualité d’air intérieur. Le naphthalene. Agence Francaise de la Sécurité Sanitaire de l’Environnement et du Travail

  7. 7.

    WHO (2010) WHO guidelines for indoor air quality: selected pollutants. World Health Organization, Copenhagen

  8. 8.

    EU-SCOEL (2010) Recommendation from the Scientific Committee on Occupational Exposure Limits for naphthalene. SCOEL/SUM/90. March 2010

  9. 9.

    UBA (2008) Vergleichswerte für flüchtige organische Verbindungen (VOC und Aldehyde) in der Innenraumluft von Haushalten in Deutschland. Bundesgesundheitsblatt 51:109–112

    Article  Google Scholar 

  10. 10.

    Hofmann H, Plieninger P (2008) Bereitstellung einer Datenbank zum Vorkommen von flüchtigen organischen Verbindungen in der Raumluft. http://www.umweltdaten.de/publikationen/fpdf-l/3637.pdf

  11. 11.

    Ostendorp G, Riemer D, Harmel K, Heinzow B (2009) Aktuelle Hintergrundwerte zur VOC-Belastung in Schulen und Kindergärten in Schleswig-Holstein. Umweltmed Forsch Prax 14:135–152

    CAS  Google Scholar 

  12. 12.

    Grams H (2012) Mitteilung des NLGA. Unveröffentlichte Ergebnisse

  13. 13.

    Hahn N von, Van Gelder R, Breuer D et al (2011) Ableitung von Innenraumarbeitsplatz-Referenzwerten. Gefahrstoffe Reinhaltung Luft 71:314–322

    Google Scholar 

  14. 14.

    Baudisch C (2011) Mitteilung des LAGUS-MV. Unveröffentlichte Ergebnisse

  15. 15.

    Orjuela MA, Liu X, Miller RL et al (2012) Urinary naphthol metabolites and chromosomal aberrations in 5-year-old children. Cancer Epidemiol Biomarkers Prev 21:1191–1202

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Batterman S, Chin JY, Jia C et al (2012) Sources, concentrations, and risks of naphthalene in indoor and outdoor air. Indoor Air 22:266–278

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Zuraimi MS, Roulet CA, Tham KW et al (2006) A comparative study of VOCs in Singapore and European office buildings. Build Environ 41:316–329

    Article  Google Scholar 

  18. 18.

    HBM-Komm (2007) Naphthalin/Naphthole und Human-Biomonitoring. Stellungnahme der Kommission Human-Biomonotoring des Umweltbundesamtes. Bundesgesundheitsblatt 50:1357–1364

    Article  Google Scholar 

  19. 19.

    Morris JB, Buckpitt AR (2009) Upper respiratory tract uptake of naphthalene. Toxicol Sci 111:383–391

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Buckpitt A, Boland B, Isbell M et al (2002) Naphthalene-induced respiratory tract toxicity: metabolic mechanisms of toxicity. Drug Metab Rev 34:791–820

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Fukami T, Katoh M, Yamazaki H et al (2008) Human cytochrome P450 2A13 efficiently metabolize chemicals in air pollutants: naphthalene, styrene, and toluene. Chem Res Toxicol 21:720–725

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Genter MB, Marlowe J, Kevin KJ et al (2006) Naphthalene toxicity in mice and aryl hydrocarbon receptor-mediated CYPs. Biochem Biophys Res Commun 348:120–123

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Li L, Wei Y, Van Winkle L et al (2011) Generation and characterization of a Cyp2f2-null mouse and studies on the role of CYP2F2 in naphthalene-induced toxicity in the lung and nasal olfactory mucosa. J Pharmacol Exp Ther 339:62–71

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Lewis DF, Ito Y, Lake BG (2009) Molecular modeling of CYP2F substrates: comparison of naphthalene metabolism by human, rat and mouse CYP2F subfamily enzymes. Drug Metabol Drug Interact 24:229–257

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Ding X, Kaminsky LS (2003) Human extrahepatic cytochromes P450: function in xenobiotic, metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 43:149–173

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Lanza DL, Code E, Crespi CL et al (1999) Specific dehydrogenation of 3-methylindole and epoxidation of naphthalene by recombinant human CYP2F1 expressed in lymphoblastoid cells. Drug Metabol Dispos 27:798–803

    CAS  Google Scholar 

  27. 27.

    Baldwin RM, Jewell WT, Fanucchi MV et al (2004) Comparison of pulmonal/nasal CYP2F expression levels in rodents and rhesus macaque. J Pharmacol Exp Ther 309:127–136

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Tingle MD, Pirmohamed M, Templeton E et al (1993) An investigation of the formation of cytotoxic, genotoxic, protein-active and stable metabolites from naphthalene by human liver microsomes. Biochem Pharmacol 46:1529–1538

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Recio L, Shepard KG, Hernandez LG, Kedderis GL (2012) Dose-response assessment of naphthalene-induced genotoxicity and glutathione detoxication in human TK6 lymphoblasts. Toxicol Sci 126:405–412

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    DeStefano-Shields C, Morin D, Buckpitt A (2010) Formation of covalently bound protein adducts from the cytotoxicant naphthalene in nasal epithelium: species comparison. Environ Health Perspect 118:647–652

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Heikkilä P, Luotamo M, Pyy L, Riihimäki V (1995) Urinary 1-naphthol and 1-pyrenol as indicators of exposure to coal tar products. Int Arch Occup Environ Health 67:211–217

    PubMed  Google Scholar 

  32. 32.

    EC-CSTEE (2002) Opinion on the results of the risk assessment of naphthalene. 29th plenary meeting. European Commission, DG Health and Consumer Protection, Brussels

  33. 33.

    Cruzan G, Bus J, Banton M et al (2009) Mouse specific lung tumors from CYP2F2-mediated cytotoxic metabolism: an endpoint/toxic response where data from multiple chemicals converge to support a mode of action. Regul Toxicol Pharmacol 55:205–218

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    IARC (2002) Naphthalene. IARC Monographs on the evaluation of carcinogenic risks to human 82:367–435. International Agency for Research on Cancer, Lyon

    Google Scholar 

  35. 35.

    Bogen KT, Benson JM, Yost GS et al (2008) Naphthalene metabolism in relation to target tissue anatomy, physiology, cytotoxicity and tumorigenic mechanism of action. Regul Toxicol Pharmacol 51:S27–S36

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Lee MG, Phimister A, Morin D et al (2005) In situ naphthalene bioactivation and nasal airflow cause region-specific injury patterns in the nasal mucosa of rats exposed to naphthalene by inhalation. J Pharmacol Exp Ther 314:103–110

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Thornton-Manning JR, Dahl AR (1997) Metabolic capacity of nasal tissue interspecies comparisons of xenobiotic-metabolizing enzymes. Mutat Res 380:43–59

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Dodd DE, Gross EA, Miller RA, Wong BA (2010) Nasal olfactory epithelial lesions in F344 and SD rats following 1- and 5-day inhalation exposure to naphthalene vapor. Int J Toxicol 29:175–184

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    ECB (2003) Naphthalene. European Union Risk Assessment Report. EUR 20763 EN. European Commission, Joint Research Centre, European Chemicals Bureau, Ispra

  40. 40.

    Coombs DW (1993) Naphthalene 4-week inhalation study in rats. Huntingdon Research Center, Huntingdon

  41. 41.

    Dodd DE, Wong BA, Gross EA, Miller RA (2012) Nasal epithelial lesions in F344 rats following a 90-day inhalation exposure to naphthalene. Inhal Toxicol 24:70–79

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Coombs DW, Kieran PC, Hardy CJ et al (1993) Naphthalene 13-week inhalation study in rats. Huntingdon Research Center, Huntingdon

  43. 43.

    US-NTP (2000) Toxicology and carcinogenesis studies of naphthalene (CAS no. 91-20-3) in F344/N rats (inhalation studies). National Toxicology Program. Techn Rep 500:1–176. http://www.ntp.niehs.nih.gov/ntp/htdocs/LT_rpts/tr500.pdf

  44. 44.

    Abdo KM, Grumbein S, Chou BJ, Herbert R (2001) Toxicity and carcinogenicity study in F344 rats following 2 years of whole-body exposure to naphthalene vapors. Inhal Toxicol 13:931–950

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    North DW, Abdo KM, Benson JM et al (2008) A review of whole animal bioassays of the carcinogenic potential of naphthalene. Regul Toxicol Pharmacol 51:S6–S14

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    AGS (2011) Begründung zu Naphthalin in TRGS 900. Ausgabe März 2011. Ausschuss für Gefahrstoffe. http://baua.de/de/Themen-von-A-Z/Gefahrstoffe/TRGS/Arbeitsplatzgrenzwerte.htlm

  47. 47.

    Lewis RJ (2012) Naphthalene animal carcinogenicity and human relevancy: overview of industries with naphthalene containing streams. Regul Toxicol Pharmacol 62:131–137

    Article  Google Scholar 

  48. 48.

    US-EPA (2004) Toxicological review of naphthalene. External review draft. Revised June 2004. US Environmental Protection Agency

  49. 49.

    Magee B, Samuelian J, Haines K et al (2010) Screening-level population risk assessment of nasal tumors in the US due to naphthalene exposure. Regul Toxicol Pharmacol 57:168–180

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Brusick D (2008) Critical assessment of the genetic toxicity of naphthalene. Regul Toxicol Pharmacol 51:S37–S42

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Saeed M, Higginbotham S, Gaikwa N et al (2009) Depurinating naphthalene-DNA adducts in mouse skin related to cancer initiation. Free Radic Biol Med 47:1075–1081

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Brusick D, Small MS, Cavalieri EL et al (2008) Possible genotoxic modes of action for naphthalene. Regul Toxicol Pharmacol 51:S43–S50

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Meng F, Wang Y, Myers MB et al (2011) p53 codon 271 CGT to CAT mutant fraction does not increase in nasal respiratory and olfactory epithelia of rats exposed to inhaled naphthalene. Mutat Res 721:199–205

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Devos M, Patte F, Rouault J et al (1990) Standardized human olfactory thresholds. IRL Press, Oxford

  55. 55.

    Amoore JE, Hautala E (1983) Odor as an aid to chemical safety: odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. J Appl Toxicol 3:272–290

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Rasmussen RE, Do DH, Kim TS, Dearden LC (1986) Comparative cytotoxicity of naphthalene and its monomethyl- and mononitro-derivatives in the mouse lung. J Appl Toxicol 6:13–20

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Korsak Z, Majcherek W, Rydzynski K (1998) Toxic effects of acute inhalation exposure to 1-methylnaphthalene and 2-methylnaphthalene in experimental animals. Int J Occup Med Environ Health 11:335–342

    PubMed  CAS  Google Scholar 

  58. 58.

    Lin CY, Wheelock AM, Morin D et al (2009) Toxicity and metabolism of methylnaphthalenes: comparison with naphthalene and 1-nitronaphthalene. Toxicology 260:16–27

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Swiercz R, Wasowicz W, Stetkiewicz J et al (2011) 4-week inhalation toxicity of 2-methylnaphthalene in experimental animals. Int J Occup Med Environ Health 24:399–408

    PubMed  Article  Google Scholar 

  60. 60.

    Köhler M, Weis N, Zorn C (2004) Luftgetragene PAK-Belastungen in Innenräumen – Vorkommen, Quellen und Bewertung. AGÖF, Springe-Eldagsen

  61. 61.

    Mertens J, Köhler M, Mehnert J, Weis N (2010) Erfahrungen mit PAK-Belastungen durch Homogenasphaltplatten. AGÖF, Springe-Eldagsen

  62. 62.

    WHO (1998) Selected non-heterocyclic polycyclic aromatic hydrocarbons. Environ Health Crit 202. World Health Organization, Geneva

  63. 63.

    DFG (2008) Polycyclische Aromatische Kohlenwasserstoffe (PAH). In: Deutsche Forschungsgemeinschaft (Hrsg) Gesundheitsschädliche Arbeitsstoffe. 45. Lieferung. Wiley-VCH, Weinheim

Download references

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Richtwerte für Naphthalin und Naphthalin-ähnliche Verbindungen in der Innenraumluft. Bundesgesundheitsbl. 56, 1448–1459 (2013). https://doi.org/10.1007/s00103-013-1836-9

Download citation