Skip to main content

Advertisement

Log in

Erhöhung der Arzneimitteltherapiesicherheit durch Identifizierung genetisch prädisponierter Personen

Personalisierte klinische Ansätze und regulatorische Maßnahmen

Improvement of medication safety by identification of genetically predisposed subjects

Personalized clinical strategies and regulatory advices

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Hintergrund

Unerwünschte Arzneimittelwirkungen (UAWs) haben eine hohe sozioökonomische Relevanz und erfordern eine effektive Prävention. Neben prozessbedingten vermeidbaren Fehlern sind für den personalisierten Ansatz zur Vermeidung von UAWs auch genetische Polymorphismen zu berücksichtigen.

Ziel

An 5 Kasuistiken wird exemplarisch für einige Therapiemodalitäten die klinische Bedeutung prospektiver Testungen zur Abschätzung des individuellen Risikos suszeptibler Personen dargestellt.

Material und Methoden

Die Rolle des HLA-Systems, der Cytochrom-P450-Familie, weiterer Metabolisierungsenzyme und von Transportproteinen wird zur Verdeutlichung der Bandbreite genetischer Suszeptibilität beschrieben. Warum, wann und für wen prätherapeutische Tests auf genetische Polymorphismen zur Risikominimierung von UAWs derzeit empfohlen werden, wird aufgezeigt.

Ergebnisse

1) Vor einer Therapie bei Südostasiaten mit Carbamazepin und 2) vor der Behandlung von Personen – unabhängig von ihrer ethnischen Herkunft – mit Abacavir ist die Bestimmung der genetischen Suszeptibilität schon heute in der ärztlichen Praxis etabliert und sollte für die Therapieentscheidung herangezogen werden.

Schlussfolgerung

Über die breite Anwendung personalisierter Medizin als wirksames Instrument zur Vermeidung von UAWs entscheidet die Relation zwischen dem evidenzbasierten Nutzen für den Patienten einerseits und den Kosten eines Testes andererseits.

Abstract

Background

Because adverse drug events (ADEs) have a high socio-economic impact there is an urgent need for effective prevention. In addition to process-related avoidable errors personalised approaches for the prevention of ADEs should also focus on genetic polymorphisms as potential causative agents.

Aim

Using five case reports as examples therapeutic modalities are described to illustrate the clinical impact of prospective testing aimed at estimating the individual risk of susceptible subjects.

Material and methods

The role of the HLA system, the cytochrome P450 family, other metabolic enzymes and transport proteins are described to illustrate the broad range of genetic susceptibility. It is shown, why, when and for whom pretherapeutic tests on genetic polymorphisms are recommended to reduce the risk of ADEs.

Results

The determination of genetic susceptibility is already implemented in clinical practice prior to (1) carbamazepine therapy in south-east Asians and (2) treatment with abacavir independent of ethnicity. Before prescribing carbamazepine or abacavir, it is recommended that therapeutic decisions be based on these test results.

Conclusion

The broad application of personalised medicine used as an effective tool for minimizing ADE risks is limited by the evidence-based benefit for the patient on the one hand and the costs of the test on the other hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Hooft CS van der, Dielemann JP, Siemes C et al (2008) Adverse drug reaction-related hospitalisations: a population-based cohort study. Pharmakoepidemiol Drug Saf 17:365–371

    Article  Google Scholar 

  2. Budnitz DS, Pollock DA, Weidenbach KN et al (2006) National surveillance of emergency department visits for outpatient adverse drug events. JAMA 296:1858–1866

    Article  PubMed  CAS  Google Scholar 

  3. Patel H, Bell D, Molokhia M et al (2007) Trends in hospital admissions for adverse drug reactions in England: analysis of national hospital episode statistics 1998–2005. BMC Clin Pharmacol 7:9

    Article  PubMed  Google Scholar 

  4. Stausberg J, Hasford J (2011) Drug-related admissions and hospital-acquired adverse drug events in Germany: a longitudinal analysis from 2003 to 2007 of ICD-10-coded routine data. BMC Health Serv Res 11:134

    Article  PubMed  Google Scholar 

  5. Stark RG, John J, Leidl R (2011) Health care use and costs of adverse drug events emerging from outpatient treatment in Germany: a modelling approach. BMC Health Serv Res 11:9

    Article  PubMed  Google Scholar 

  6. Woopen C (2013) Vorwort. In: Deutscher Ethikrat (Hrsg) Tagungsdokumentation: Personalisierte Medizin – der Patient als Nutznießer oder Opfer? Jahrestagung des Deutschen Ethikrates 2012. Deutscher Ethikrat, Berlin, S 7–10

  7. Dieterle F, Sistare F, Goodsaid F et al (2010) Renal biomarker qualification submission: a dialog between the FDA-EMEA and predictive safety testing consortium. Nat Biotechnol 28:455–462

    Article  PubMed  CAS  Google Scholar 

  8. Eyers S, Fingleton J, Eastwood A et al (2012) British National Formulary for Children: the risk of inappropriate paracetamol prescribing. Arch Dis Child 97:279–282

    Article  PubMed  Google Scholar 

  9. Kallergis EM, Goudis CA, Simantirakis EN et al (2012) Mechanisms, risk factors, and management of acquired long QT syndrome: a comprehensive review. Scientific World J 2012:212178

    Article  Google Scholar 

  10. Seden K, Dickinson L, Khoo S, Back D (2010) Grapefruit-drug interactions. Drugs 70:2373–2407

    Article  PubMed  CAS  Google Scholar 

  11. Lilja JJ, Neuvonen M, Neuvonen PJ (2004) Effects of regular consumption of grapefruit juice on the pharmacokinetics of simvastatin. Br J Clin Pharmacol 58:56–60

    Article  PubMed  CAS  Google Scholar 

  12. Fuhr U (2000) Induction of drug metabolising enzymes: pharmacokinetic and toxicological consequences in humans. Clin Pharmacokinet 38:493–504

    Article  PubMed  CAS  Google Scholar 

  13. Smith RG (2009) An appraisal of potential drug interactions in cigarette smokers and alcohol drinkers. J Am Podiatr Med Assoc 99:81–88

    PubMed  Google Scholar 

  14. Konstantinidis A, Spindelegger C, Kasper S (2010) SJS unter Carbamazepin bei HLA-B*1502-Allel. CC neuropsy 1:38–39

    Google Scholar 

  15. Chung W-H, Hung S-I, Hong H-S et al (2004) Medical genetics: a marker for Stevens-Johnson syndrome. Nature 428:486

    Article  PubMed  CAS  Google Scholar 

  16. Ferrell PB Jr, McLeod HL (2008) Carbamazepine, HLA-B*1502 and risk of Stevens-Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics 9:1543–1546

    Article  PubMed  CAS  Google Scholar 

  17. Hung SI, Chung WH, Liu ZS et al (2010) Common risk allele in aromatic antiepileptic induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 11:349–356

    Article  PubMed  CAS  Google Scholar 

  18. Peyrieere H, Nicolas J, Siffert M et al (2001) Hypersensitivity related to abacavir in two members of a family. Ann Pharmacother 35:1291–1292

    Article  PubMed  CAS  Google Scholar 

  19. Phillips EJ, Mallal SA (2010) Pharmacogenetics of drug hypersensitivity. Pharmacogenomics 11:973–987

    Article  PubMed  CAS  Google Scholar 

  20. Hetherington S, Hughes AR, Mosteller M et al (2002) Genetic variations in HLA-B region and hypersensitivity reaction to abacavir. Lancet 359:1121–1122

    Article  PubMed  CAS  Google Scholar 

  21. Mallal S, Phillips E, Carosi G et al (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358:568–579

    Article  PubMed  Google Scholar 

  22. Zucman D, Truchis Pd, Majerholc C et al (2007) Prospective screening for human leukocyte antigen-B*5701 avoids abacavir hypersensitivity reaction in the ethnically mixed French HIV population. J Acquir Immune Defic Syndr 45:1–3

    Article  PubMed  CAS  Google Scholar 

  23. Phillips EJ, Mallal SA (2011) Abacavir. In: Wu AHB, Yeo KTJ (Hrsg) Pharmacogenomic testing in current clinical practice. Implementation in the clinical laboratory. Springer, Heidelberg, S 201–212

  24. Alfirevic A, Pirmohamed M (2011) Drug induced hypersensitivity and the HLA complex. Pharmaceuticals 4:69–90

    Article  CAS  Google Scholar 

  25. Kaniwa N, Saito Y, Aihara M et al (2010) HLA-B*1511 is a risk factor for carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia 51:2461–2465

    Article  PubMed  CAS  Google Scholar 

  26. Koren G, Cairns J, Chitayat D et al (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 368:704

    Article  PubMed  Google Scholar 

  27. Meny RG, Naumburg EG, Alger LS et al (1993) Codeine and the breastfed neonate. J Hum Lact 9:237–240

    Article  PubMed  CAS  Google Scholar 

  28. Johansson I, Ingelman-Sundberg M (2011) Genetic polymorphism and toxicology – with emphasis on cytochrome p450. Toxicol Sci 120:1–13

    Article  PubMed  CAS  Google Scholar 

  29. Sheffield LJ, Phillimore HE (2009) Clinical use of pharmacogenomic tests in 2009. Clin Biochem Rev 30:55–65

    PubMed  Google Scholar 

  30. Hiratsuka M (2012) In vitro assessment of the allelic variants of cytochrome P450. Drug Metab Pharmacokinet 27:68–84

    Article  PubMed  CAS  Google Scholar 

  31. Cavallari LH, Jeong H, Bress A (2011) Role of cytochrome P450 genotype in the steps toward personalized drug therapy. Pharmgenomics Pers Med 4:123–136

    PubMed  CAS  Google Scholar 

  32. Müller DJ, Kluge U, Heinz A (2013) Haben die Ostfriesen andere Gene? Dtsch Arztebl 110:314−317

    Google Scholar 

  33. Jaquenoud Sirot E, Velden JW van der, Rentsch K et al (2006) Therapeutic drug monitoring and pharmacogenetic tests as tools in pharmacovigilance. Drug Saf 29:735–768

    Article  Google Scholar 

  34. Flockhart DA (2009) Drug interactions: cytochrome P450 drug interaction table. Indiana University School of Medicine. http://medicine.iupui.edu/clinpharm/ddis/table.aspx

  35. Cascorbi I (2012) Drug interactions – principles, examples and clinical consequences. Dtsch Arztebl Int 109:546–555

    PubMed  Google Scholar 

  36. Gupta A, Lawrence AT, Krishnan K et al (2007) Current concepts in the mechanisms and management of drug-induced QT prolongation and torsade de pointes. Am Heart J 153:891–899

    Article  PubMed  Google Scholar 

  37. Carrillo JA, Herráiz AG, Ramos SI et al (2003) Role of the smoking-induced cytochrome P450 (CYP)1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine. J Clin Psychopharmacol 23:119–127

    Article  PubMed  CAS  Google Scholar 

  38. Mazzei T (2011) The difficulties of polytherapy: examples from antimicrobial chemotherapy. Intern Emerg Med 6(Suppl 1):103–109

    Article  PubMed  Google Scholar 

  39. Elsby R, Hilgendorf C, Fenner K (2012) Understanding the critical disposition pathways of statins to assess drug-drug interaction risk during drug development: it’s not just about OATP1B1. Clin Pharmacol Ther 92:584–598

    Article  PubMed  CAS  Google Scholar 

  40. Tavadia SM, Mydlarski PR, Reis MD et al (2000) Screening for azathioprine toxicity: a pharmacoeconomic analysis based on a target case. J Am Acad Dermatol 42:628–632

    PubMed  CAS  Google Scholar 

  41. Chouchana L, Narjoz C, Beaune P et al (2012) Review article: the benefits of pharmacogenetics for improving thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther 35:15–36

    Article  PubMed  CAS  Google Scholar 

  42. Notarangelo FM, Marziliano N, Demola AM et al (2012) Genetic predisposition to atorvastatin-induced myopathy: a case report. J Clin Pharm Ther 37:604–606

    Article  Google Scholar 

  43. Niemi M, Pasanen MK, Neuvonen PJ (2011) Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 63:157–181

    Article  PubMed  CAS  Google Scholar 

  44. Amstutz U, Froehlich TK, Largiadèr CR (2011) Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics 12:1321–1336

    Article  PubMed  CAS  Google Scholar 

  45. Marques SC, Ikediobi ON (2010) The clinical application of UGT1A1 pharmacogenetic testing: gene-environment interactions. Hum Genomics 4:238–249

    PubMed  CAS  Google Scholar 

  46. Mikami LR, Wieseler S, Souza RL et al (2008) Five new naturally occurring mutations of the BCHE gene and frequencies of 12 butyrylcholinesterase alleles in a Brazilian population. Pharmacogenet Genomics 18:213–218

    Article  PubMed  CAS  Google Scholar 

  47. Soliday FK, Conley YP, Henker R (2010) Pseudocholinesterase deficiency: a comprehensive review of genetic, acquired, and drug influences. AANA J 78:313–320

    PubMed  Google Scholar 

  48. Yen T, Nightingale BN, Burns JC et al (2003) Butyrylcholinesterase (BCHE) genotyping for post-succinylcholine apnea in an Australian population. Clin Chem 49:1297–1308

    Article  PubMed  CAS  Google Scholar 

  49. Nascimento TS do, Pereira RO, Mello HL de, Costa J (2008) Methemoglobinemia: from diagnosis to treatment. Rev Bras Anestesiol 58:651–664

    Article  PubMed  Google Scholar 

  50. Spyridopoulou KP, Dimou NL, Hamodrakas SJ, Bagos PG (2012) Methylene tetrahydrofolate reductase gene polymorphisms and their association with methotrexate toxicity: a meta-analysis. Pharmacogenet Genomics 22:117–133

    Article  PubMed  CAS  Google Scholar 

  51. Daly AK (2013) Optimal dosing of warfarin and other coumarin anticoagulants: the role of genetic polymorphisms. Arch Toxicol 87:407–420

    Article  PubMed  CAS  Google Scholar 

  52. Howes RE, Battle KE, Satyagraha AW et al (2013) G6PD deficiency: global distribution, genetic variants and primaquine therapy. Adv Parasitol 81:133–201

    Article  PubMed  Google Scholar 

  53. Brandom BW (2006) Genetics of malignant hyperthermia. Scientific World J 6:1722–1730

    Article  CAS  Google Scholar 

  54. Bloomgren G, Richman S, Hotermans C et al (2012) Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med 366:1870–1880

    Article  PubMed  CAS  Google Scholar 

  55. Lucas A, Nolan D, Mallal S (2007) HLA-B*5701 screening for susceptibility to abacavir hypersensitivity. J Antimicrob Chemother 59:591–593

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Die Autoren danken Frau Karin Holz für die wertvolle Unterstützung bei der Erstellung des Manuskriptes.

Einhaltung ethischer Richtlinien

Interessenkonflikt. R. Lux, S. Wärntges, S. Bergner und B. Kütting geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kütting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lux, R., Wärntges, S., Bergner, S. et al. Erhöhung der Arzneimitteltherapiesicherheit durch Identifizierung genetisch prädisponierter Personen. Bundesgesundheitsbl. 56, 1545–1556 (2013). https://doi.org/10.1007/s00103-013-1827-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-013-1827-x

Schlüsselwörter

Keywords

Navigation