Skip to main content

Advertisement

Log in

Biomarkeranalytik aus Sicht des Pathologen

Grundlage für eine rationale, personalisierte Tumortherapie am Beispiel von Lungenkrebs

Biomarker analysis from a pathologist’s view

Founding the rationale for personalised treatment of lung cancer

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

In der Ära der genomischen Medizin und der Sequenzierung zahlreicher Krebsgenome hat sich unser Verständnis der molekularen Mechanismen der Krebsentstehung zusehends verbessert. Die Initiierung der Krebsentstehung über genetische und epigenetische Veränderungen (pathogenetische Läsionen) und die Tumorprogression durch sog. Treibermutationen wurden erkannt. Zudem hat die schnelle Entwicklung von niedermolekularen Inhibitoren und hochselektiven Biologika dazu geführt, dass onkogenen Signalen, die durch Alterationen im Krebsgenom entstehen, zielgerichtet begegnet werden kann. Hierdurch ist der Pathologe nun in der Lage, die tumorverursachenden Veränderungen im Krebsgenom als molekulare Biomarker zu diagnostizieren und die Selektion von Patienten in effektive und hochsensitive Therapiemodalitäten zu steuern. Wenn onkogene Treibermutationen intensiv präklinisch validiert werden und ein entsprechender diagnostischer Test zur Verfügung steht, ist es möglich, zu einem sehr frühen Zeitpunkt der klinischen Medikamentenentwicklung einen Proof-of-Concept (PoC) zu erbringen, der einen unmittelbaren persönlichen Nutzen für die Patienten in solchen Phase-I/II-Studien hat. Diese neue Vorgehensweise hat die klinischen Tests signifikant verändert und vermeidet zudem, dass die Wirksamkeit in großen klinischen Phase-III-Studien mit einer hohen Ausfallrate getestet werden muss. Daher fasst der vorliegende Beitrag neuste und paradigmatische Prozesse der Biomarkerdiagnostik am Beispiel von Lungenkrebs zusammen und definiert akademische und regulatorische Anforderungen der Biomarkeranalyse und selektiver personalisierter Therapien.

Abstract

The advent of genomic medicine and sequencing analysis of entire cancer genomes has rapidly improved our understanding of cancer genomics and has defined pathogenetic lesions initiating and driving cancer phenotypes in a causative manner. Moreover rapid development of small molecule inhibitors and highly selective biologicals provided effective tools to intervene with oncogenic signalling resulting from such lesions in the cancer genome. Thereby, the pathologist is now in the position to diagnose causative lesions in the cancer genome as molecular biomarkers directing the selection of patients for effective and highly selective therapies. If oncogenic driver lesions are vigorously validated preclinically and a useful diagnostic test is available, it is possible to provide a proof-of-concept at a very early stage of clinical drug development with the possibility of immediate personal benefit for participants in such phase I/II studies. This approach has significantly changed clinical testing and avoids testing proof for efficacy in large stage III clinical trials at a high failure rate. Therefore, our review summarises recent and paradigmatic progress in lung cancer biomarker diagnostics and defines academic and regulatory requirements for biomarker analysis and selective personalised therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Deutsche Krebsgesellschaft E.V. (2012) Krebshäufigkeit – die aktuellen Zahlen. http://www.krebsgesellschaft.de/krebshaeufigkeit,111267.html (Zugegriffen: 02.02.2013)

  2. Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  PubMed  CAS  Google Scholar 

  3. Schiller JH, Harrington D, Belani CP et al (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346:92–98

    Article  PubMed  CAS  Google Scholar 

  4. Shepherd FA, Rodrigues Pereira J, Ciuleanu T et al (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132

    Article  PubMed  CAS  Google Scholar 

  5. Hanna N, Shepherd FA, Fossella FV et al (2004) Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol 22:1589–1597

    Article  PubMed  CAS  Google Scholar 

  6. Buettner R, Wolf J, Thomas RK (2013) Lessons to learned from lung cancer genomics: the emerging concept of individualized diagnostics and treatment. J Clin Oncol (im Druck)

  7. Bergethon K, Shaw AT, Ou SH et al (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30:863–870

    Article  PubMed  CAS  Google Scholar 

  8. Ilo, Unep, Who (2001) Biomarkers in risk assessment: validity and validation: environmental health criteria no. 222. World Health Organization, Geneva

  9. Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  PubMed  CAS  Google Scholar 

  10. Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  PubMed  CAS  Google Scholar 

  11. Pao W, Miller V, Zakowski M et al (2004) EGF receptor gene mutations are common in lung cancers from „never smokers“ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101:13306–13311

    Article  PubMed  CAS  Google Scholar 

  12. Pao W, Chmielecki J (2010) Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer 10:760–774

    Article  PubMed  CAS  Google Scholar 

  13. Kohno T, Ichikawa H, Totoki Y et al (2012) KIF5B-RET fusions in lung adenocarcinoma. Nat Med 18:375–377

    Article  PubMed  CAS  Google Scholar 

  14. Lipson D, Capelletti M, Yelensky R et al (2012) Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 18:382–384

    Article  PubMed  CAS  Google Scholar 

  15. Takeuchi K, Soda M, Togashi Y et al (2012) RET, ROS1 and ALK fusions in lung cancer. Nat Med 18:378–381

    Article  PubMed  CAS  Google Scholar 

  16. Dutt A, Ramos AH, Hammerman PS et al (2011) Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoS One 6:e20351

    Article  PubMed  CAS  Google Scholar 

  17. Hammerman PS, Sos ML, Ramos AH et al (2011) Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov 1:78–89

    Article  PubMed  CAS  Google Scholar 

  18. Benson JD, Chen YN, Cornell-Kennon SA et al (2006) Validating cancer drug targets. Nature 441:451–456

    Article  PubMed  CAS  Google Scholar 

  19. Sellers WR (2011) A blueprint for advancing genetics-based cancer therapy. Cell 147:26–31

    Article  PubMed  CAS  Google Scholar 

  20. Kluter S, Simard JR, Rode HB et al (2010) Characterization of irreversible kinase inhibitors by directly detecting covalent bond formation: a tool for dissecting kinase drug resistance. Chembiochem 11:2557–2566

    Article  PubMed  Google Scholar 

  21. Kobayashi S, Boggon TJ, Dayaram T et al (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352:786–792

    Article  PubMed  CAS  Google Scholar 

  22. Michalczyk A, Kluter S, Rode HB et al (2008) Structural insights into how irreversible inhibitors can overcome drug resistance in EGFR. Bioorg Med Chem 16:3482–3488

    Article  PubMed  CAS  Google Scholar 

  23. Pao W, Miller VA, Politi KA et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73

    Article  PubMed  Google Scholar 

  24. Kwak EL, Sordella R, Bell DW et al (2005) Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci U S A 102:7665–7670

    Article  PubMed  CAS  Google Scholar 

  25. Zhou W, Ercan D, Chen L et al (2009) Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 462:1070–1074

    Article  PubMed  CAS  Google Scholar 

  26. Li D, Ambrogio L, Shimamura T et al (2008) BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27:4702–4711

    Article  PubMed  CAS  Google Scholar 

  27. Regales L, Gong Y, Shen R et al (2009) Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J Clin Invest 119:3000–3010

    PubMed  CAS  Google Scholar 

  28. Sos ML, Rode HB, Heynck S et al (2010) Chemogenomic profiling provides insights into the limited activity of irreversible EGFR Inhibitors in tumor cells expressing the T790M EGFR resistance mutation. Cancer Res 70:868–874

    Article  PubMed  CAS  Google Scholar 

  29. Xu L, Kikuchi E, Xu C et al (2012) Combined EGFR/MET or EGFR/HSP90 inhibition is effective in the treatment of lung cancers co-driven by mutant EGFR containing T790M and MET. Cancer Res 72(13):3302–3311

    Article  PubMed  CAS  Google Scholar 

  30. Janne PA, Boss DS, Camidge DR et al (2011) Phase I dose-escalation study of the pan-HER inhibitor, PF299804, in patients with advanced malignant solid tumors. Clin Cancer Res 17:1131–1139

    Article  PubMed  CAS  Google Scholar 

  31. Miller VA, Hirsh V, Cadranel J et al (2012) Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol 13:528–538

    Article  PubMed  CAS  Google Scholar 

  32. Bean J, Brennan C, Shih JY et al (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 104:20932–20937

    Article  PubMed  CAS  Google Scholar 

  33. Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  PubMed  CAS  Google Scholar 

  34. Sequist LV, Waltman BA, Dias-Santagata D et al (2011) Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 3:75ra26

    Article  PubMed  Google Scholar 

  35. Ohashi K, Sequist LV, Arcila ME et al (2012) Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proceedings of the National Academy of Sciences of the United States of America

  36. Zakowski MF, Ladanyi M, Kris MG, Group MS-KCCLCO (2006) EGFR mutations in small-cell lung cancers in patients who have never smoked. N Engl J Med 355:213–215

    Article  PubMed  CAS  Google Scholar 

  37. Yun CH, Mengwasser KE, Toms AV et al (2008) The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A 105:2070–2075

    Article  PubMed  CAS  Google Scholar 

  38. Chmielecki J, Foo J, Oxnard GR et al (2011) Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci Transl Med 3:90ra59

    Article  PubMed  CAS  Google Scholar 

  39. Yap TA, Vidal L, Adam J et al (2010) Phase I trial of the irreversible EGFR and HER2 kinase inhibitor BIBW 2992 in patients with advanced solid tumors. J Clin Oncol 28:3965–3972

    Article  PubMed  CAS  Google Scholar 

  40. Heuckmann JM, Rauh D, Thomas RK (2012) Epidermal growth factor receptor (EGFR) signaling and covalent EGFR inhibition in lung cancer. J Clin Oncol 30:3417–3420

    Article  PubMed  CAS  Google Scholar 

  41. Walter AO,Tjin R, Haringsma H et al (2011) CO-1686, an orally available, mutant-selective inhibitor of the epidermal growth factor receptor (EGFR), causes tumor shrinkage in non-small cell lung cancer (NSCLC) with T790M mutations. In: AACR-NCI-EORTC International Conference: molecular targets and cancer therapeutics. Mol Cancer Ther, San Francisco

  42. Heuckmann JM, Holzel M, Sos ML et al (2011) ALK mutations conferring differential resistance to structurally diverse ALK inhibitors. Clin Cancer Res 17:7394–7401

    Article  PubMed  CAS  Google Scholar 

  43. Sasaki T, Okuda K, Zheng W et al (2010) The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res 70:10038–10043

    Article  PubMed  CAS  Google Scholar 

  44. Heukamp LC, Thor T, Schramm A et al (2012) Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Sci Transl Med 4:141ra191

    Article  Google Scholar 

  45. Gan HK, You B, Pond GR, Chen EX (2012) Assumptions of expected benefits in randomized phase III trials evaluating systemic treatments for cancer. J Natl Cancer Inst 104:590–598

    Article  PubMed  Google Scholar 

  46. Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703

    Article  PubMed  CAS  Google Scholar 

  47. Shaw AT, Camidge DR, Engelman JA et al (2012) Clinical activity of crizotinib in advanced non-small cell lung cancer (NSCLC) harboring ROS1 gene rearrangement. J Clin Oncol 30 (Abstract #7508)

  48. Lin Y, Shih WJ (2004) Adaptive two-stage designs for single-arm phase IIA cancer clinical trials. Biometrics 60:482–490

    Article  PubMed  Google Scholar 

  49. Fabian MA, Biggs WH 3rd, Treiber DK et al (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23:329–336

    Article  PubMed  CAS  Google Scholar 

  50. Zander T, Scheffler M, Nogova L et al (2011) Early prediction of nonprogression in advanced non-small-cell lung cancer treated with erlotinib by using [(18)F]fluorodeoxyglucose and [(18)F]fluorothymidine positron emission tomography. J Clin Oncol 29:1701–1708

    Article  PubMed  CAS  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. R. Büttner erhält Berater- und Referentenhonorar von den Firmen Roche, Novartis Boehringer Ingelheim, Lilly, AstraZeneca und Pfizer und Forschungsunterstützung von den Firmen Roche und Novartis. R. Büttner ist Gründer und Besitzer von Targos Molecular Diagnostics Ltd., Kassel und Köln, Deutschland. C. Heydt gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Buettner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buettner, R., Heydt, C. Biomarkeranalytik aus Sicht des Pathologen. Bundesgesundheitsbl. 56, 1502–1508 (2013). https://doi.org/10.1007/s00103-013-1823-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-013-1823-1

Schlüsselwörter

Keywords

Navigation