Skip to main content

Advertisement

Log in

Personalisierte Ansätze zur Diagnostik und Therapie von Allergien

Personalised medicine for the diagnosis and treatment of allergic diseases

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Immunglobulin-E (IgE)-vermittelte allergische Erkrankungen zeichnen sich durch einen heterogenen klinischen Phänotyp und sehr unterschiedliche Sensibilisierungsprofile aus. Sie weisen somit einen ausgesprochen individuellen Charakter auf. Neben einer genetischen Prädisposition spielen in der Sensibilisierungsphase und bei der Auslösung von Symptomen die verschiedensten Umweltfaktoren eine Rolle. Da die wichtigsten klinisch relevanten Allergene inzwischen in gereinigter Form als rekombinante Allergene zur Verfügung stehen, kann das Sensibilisierungsmuster der betroffenen Allergiker mittels Komponenten-aufgelöster In-vitro-Diagnostik auf molekularer Ebene erfasst werden. Solche Daten erlauben möglicherweise Aussagen über den Schwergrad und die Persistenz der allergischen Erkrankung sowie zur Prognose einer spezifischen Immuntherapie (SIT). Das Potenzial dieses Ansatzes ist noch in kontrollierten klinischen Studien zu prüfen. Weiterhin werden im vorliegenden Beitrag im Kontext der atopischen Dermatitis (AD), der allergischen Rhinitis, des allergischen Asthmas und des atopischen Marsches verschiedene weitere Screening-Biomarker, diagnostische und prognostische Biomarker, Biomarker für den Schweregrad der Erkrankungen und prädiktive Biomarker vorgestellt und diskutiert. Ein erheblicher Anteil der Immuntherapien allergischer Erkrankungen wird traditionell in personalisierter Weise mit Individualrezepturen durchgeführt, die häufig aus Mischungen zahlreicher Allergenextrakte bestehen. Eine gesicherte Evidenz zur Wirksamkeit und Sicherheit dieses Ansatzes liegt nicht vor. In Deutschland wurde durch die Therapieallergene-Verordnung (TAV) festgelegt, dass Allergenprodukte für die SIT von Insektengiftallergien, gegen Pollen früh blühender Bäume und Gräserpollen sowie gegen Hausstaubmilben zukünftig ausschließlich als zugelassene Arzneimittel in den Verkehr gebracht werden dürfen. Die personalisierte SIT mit Individualrezepturen wird somit auf seltenere allergische Erkrankungen eingeschränkt, für die Generierung umfassender klinischer Daten aufgrund der geringen Patientenzahlen problematisch ist. Verschiedene rekombinante Allergene werden inzwischen in klinischen Prüfungen der Phase III untersucht. Im Gegensatz zu Allergenextrakten bieten rekombinante Allergene die Möglichkeit, den Patienten mit einer Mischung exakt derjenigen Moleküle zu behandeln, gegen die eine Sensibilisierung besteht. Die Umsetzung dieses personalisierten, innovativen Immuntherapieansatzes innerhalb des bestehenden regulatorischen Rahmens stellt allerdings eine Herausforderung dar.

Abstract

Immunoglobulin E (IgE) mediated allergic diseases are characterised by heterogeneous clinical phenotypes and a large variety of different sensitisation patterns. Apart from genetic predisposition several environmental factors play a role in sensitisation and elicitation of symptoms. Since the majority of clinically relevant allergens are now available as purified recombinant allergens component-resolved in vitro diagnosis allows the sensitization profile of allergic patients to be determined at the molecular level. Such data may allow physicians to draw conclusions on the severity and persistence of a given allergic disease and to predict the outcome of allergen-specific immunotherapy (SIT) However, the potential of this approach needs to be demonstrated in controlled clinical trials. Moreover, in the context of atopic dermatitis, allergic rhinitis, allergic bronchial asthma as well as the atopic march several screening-biomarkers, diagnostic and prognostic biomarkers, biomarkers of severity and predictive biomarkers are presented and discussed in this article. Traditionally a relevant proportion of allergen-specific immunotherapies is performed in a personalised manner using named patient products manufactured on the basis of an individual prescription. Such named patient products are often mixtures containing several allergen extracts from different sources. However, there is no proven evidence for the safety and efficacy of this approach. In Germany the Therapy Allergen Ordinance (“Therapieallergene-Verordnung”, TAV) regulates that in the future allergen products for SIT of insect venom allergies, allergies to pollen of early flowering trees and grass pollen and house dust mite allergies cannot be marketed as named patient products, but always require a marketing authorisation. Thus personalised SIT with named patient products is restricted to the treatment of less prevalent allergies, for which the generation of state-of-the-art clinical data is more difficult. Several recombinant allergens are currently evaluated in phase III clinical trials. In contrast to allergen extracts recombinant allergens offer the possibility to treat patients with a precisely adjusted mixture of the disease-eliciting allergen molecules. However, the implementation of this personalised approach to SIT within the given regulatory framework represents a challenge to regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Soyer OU, Akdis M, Ring J et al (2013) Mechanisms of peripheral tolerance to allergens. Allergy 68:161–170

    Article  PubMed  CAS  Google Scholar 

  2. Bieber T, Jagobi C (2012) Atopic and allergic contact dermatitis. In: Rich RR, Fleisher TA, Shearer WT, Schroeder H, Frew AJ, Weyand CM (Hrsg) Clinical immunology: principles and practice. Elsevier, Philadelphia, S 531–542

  3. Bieber T (2008) Atopic dermatitis. N Engl J Med 358:1483–1494

    Article  PubMed  CAS  Google Scholar 

  4. Spergel JM (2010) From atopic dermatitis to asthma: the atopic march. Ann Allergy Asthma Immunol 105:99–106, quiz 107–109, 117

    Article  PubMed  CAS  Google Scholar 

  5. Barnetson RC, Gawkrodger D (1993) Atopic dermatitis. In: Holgate ST, Church MK (Hrsg) Allergy. Gower Medical Publishing, London, S 28

  6. Bousquet J, Khaltaev N, Cruz AA et al (2008) Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy 63(Suppl 86):8–160

    Article  PubMed  Google Scholar 

  7. Organization WA (2011) White book on allergy. World Allergy Organization, Milwaukee

  8. Wenzel SE (2012) Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 18:716–725

    Article  PubMed  CAS  Google Scholar 

  9. Asher MI, Montefort S, Bjorksten B et al (2006) Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 368:733–743

    Article  PubMed  Google Scholar 

  10. Ben-Shoshan M, Clarke AE (2011) Anaphylaxis: past, present and future. Allergy 66:1–14

    Article  PubMed  CAS  Google Scholar 

  11. Thomas WR (2011) The advent of recombinant allergens and allergen cloning. J Allergy Clin Immunol 127:855–859

    Article  PubMed  CAS  Google Scholar 

  12. Sastre J (2010) Molecular diagnosis in allergy. Clin Exp Allergy 40:1442–1460

    Article  PubMed  CAS  Google Scholar 

  13. Asero R (2012) Component-resolved diagnosis-assisted prescription of allergen-specific immunotherapy: a practical guide. Eur Ann Allergy Clin Immunol 44:183–187

    PubMed  CAS  Google Scholar 

  14. Melioli G, Compalati E, Bonini S, Canonica GW (2012) The added value of allergen microarray technique to the management of poly-sensitized allergic patients. Curr Opin Allergy Clin Immunol 12:434–439

    Article  PubMed  CAS  Google Scholar 

  15. Ballmer-Weber BK, Hoffmann-Sommergruber K (2011) Molecular diagnosis of fruit and vegetable allergy. Curr Opin Allergy Clin Immunol 11:229–235

    Article  PubMed  CAS  Google Scholar 

  16. Borres MP, Ebisawa M, Eigenmann PA (2011) Use of allergen components begins a new era in pediatric allergology. Pediatr Allergy Immunol 22:454–461

    Article  PubMed  Google Scholar 

  17. Caubet JC, Kondo Y, Urisu A, Nowak-Wegrzyn A (2011) Molecular diagnosis of egg allergy. Curr Opin Allergy Clin Immunol 11:210–215

    Article  PubMed  CAS  Google Scholar 

  18. Fiocchi A, Nowak-Wegrzyn A (2011) The fascinating world of molecular diagnosis in the management of food allergy: nondum matura est. Curr Opin Allergy Clin Immunol 11:200–203

    Article  PubMed  Google Scholar 

  19. Lidholm J, Ballmer-Weber BK, Mari A, Vieths S (2006) Component-resolved diagnostics in food allergy. Curr Opin Allergy Clin Immunol 6:234–240

    Article  PubMed  CAS  Google Scholar 

  20. Steckelbroeck S, Ballmer-Weber BK, Vieths S (2008) Potential, pitfalls, and prospects of food allergy diagnostics with recombinant allergens or synthetic sequential epitopes. J Allergy Clin Immunol 121:1323–1330

    Article  PubMed  CAS  Google Scholar 

  21. Vrtala S (2008) From allergen genes to new forms of allergy diagnosis and treatment. Allergy 63:299–309

    Article  PubMed  CAS  Google Scholar 

  22. Wenzel S (2012) Severe asthma: from characteristics to phenotypes to endotypes. Clin Exp Allergy 42:650–658

    Article  PubMed  CAS  Google Scholar 

  23. Anto JM, Pinart M, Akdis M et al (2012) Understanding the complexity of IgE-related phenotypes from childhood to young adulthood: a Mechanisms of the Development of Allergy (MeDALL) seminar. J Allergy Clin Immunol 129:943–954

    Article  PubMed  Google Scholar 

  24. Illi S, Mutius E von, Lau S et al (2004) The natural course of atopic dermatitis from birth to age 7 years and the association with asthma. J Allergy Clin Immunol 113:925–931

    Article  PubMed  Google Scholar 

  25. Garmhausen D, Hagemann T, Bieber T et al (2013) Characterization of different courses of atopic dermatitis in adolescent and adult patients. Allergy 68:498–506

    Article  PubMed  CAS  Google Scholar 

  26. Bieber T (2012) Atopic dermatitis 2.0: from the clinical phenotype to the molecular taxonomy and stratified medicine. Allergy 67:1475–1482

    Article  PubMed  CAS  Google Scholar 

  27. Bieber T, Cork M, Reitamo S (2012) Atopic dermatitis: a candidate for disease-modifying strategy. Allergy 67:969–975

    Article  PubMed  CAS  Google Scholar 

  28. Bieber T (2013) Stratified medicine: a new challenge for academia, industry, regulators and patients. Future Medicine, London

  29. Savenije OE, Kerkhof M, Koppelman GH, Postma DS (2012) Predicting who will have asthma at school age among preschool children. J Allergy Clin Immunol 130:325–331

    Article  PubMed  Google Scholar 

  30. Irvine AD, McLean WH, Leung DY (2011) Filaggrin mutations associated with skin and allergic diseases. N Engl J Med 365:1315–1327

    Article  PubMed  CAS  Google Scholar 

  31. Briot A, Deraison C, Lacroix M et al (2009) Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med 206:1135–1147

    Article  PubMed  CAS  Google Scholar 

  32. Szefler SJ, Wenzel S, Brown R et al (2012) Asthma outcomes: biomarkers. J Allergy Clin Immunol 129:9–23

    Article  Google Scholar 

  33. Morjaria JB, Proiti M, Polosa R (2011) Stratified medicine in selecting biologics for the treatment of severe asthma. Curr Opin Allergy Clin Immunol 11:58–63

    Article  PubMed  CAS  Google Scholar 

  34. Marenholz I, Kerscher T, Bauerfeind A et al (2009) An interaction between filaggrin mutations and early food sensitization improves the prediction of childhood asthma. J Allergy Clin Immunol 123:911–916

    Article  PubMed  CAS  Google Scholar 

  35. Heimall J, Spergel JM (2012) Filaggrin mutations and atopy: consequences for future therapeutics. Expert Rev Clin Immunol 8:189–197

    Article  PubMed  CAS  Google Scholar 

  36. Kou K, Aihara M, Matsunaga T et al (2012) Association of serum interleukin-18 and other biomarkers with disease severity in adults with atopic dermatitis. Arch Dermatol Res 304:305–312

    Article  PubMed  CAS  Google Scholar 

  37. Furue M, Matsumoto T, Yamamoto T et al (2012) Correlation between serum thymus and activation-regulated chemokine levels and stratum corneum barrier function in healthy individuals and patients with mild atopic dermatitis. J Dermatol Sci 66:60–63

    Article  PubMed  CAS  Google Scholar 

  38. Erzurum SC, Gaston BM (2012) Biomarkers in asthma: a real hope to better manage asthma. Clin Chest Med 33:459–471

    Article  PubMed  Google Scholar 

  39. Gibeon D, Chung KF (2012) The investigation of severe asthma to define phenotypes. Clin Exp Allergy 42:678–692

    Article  PubMed  CAS  Google Scholar 

  40. Samitas K, Zervas E, Vittorakis S et al (2011) Osteopontin expression and relation to disease severity in human asthma. Eur Respir J 37:331–341

    Article  PubMed  CAS  Google Scholar 

  41. Bot CM de, Moed H, Bindels PJ et al (2013) Exhaled nitric oxide measures allergy not symptoms in children with allergic rhinitis in primary care: a prospective cross-sectional and longitudinal cohort study. Prim Care Respir J 22:44–50

    Article  PubMed  Google Scholar 

  42. Jia G, Erickson RW, Choy DF et al (2012) Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J Allergy Clin Immunol 130:647–654

    Article  PubMed  CAS  Google Scholar 

  43. Slager RE, Otulana BA, Hawkins GA et al (2012) IL-4 receptor polymorphisms predict reduction in asthma exacerbations during response to an anti-IL-4 receptor alpha antagonist. J Allergy Clin Immunol 130:516–522

    Article  PubMed  CAS  Google Scholar 

  44. Shamji MH, Ljorring C, Francis JN et al (2012) Functional rather than immunoreactive levels of IgG4 correlate closely with clinical response to grass pollen immunotherapy. Allergy 67:217–226

    Article  PubMed  CAS  Google Scholar 

  45. Cappella A, Durham SR (2012) Allergen immunotherapy for allergic respiratory diseases. Hum Vaccin Immunother 8:1499–1512

    Article  PubMed  CAS  Google Scholar 

  46. Fujita H, Meyer N, Akdis M, Akdis CA (2012) Mechanisms of immune tolerance to allergens. Chem Immunol Allergy 96:30–38

    Article  PubMed  CAS  Google Scholar 

  47. Valenta R, Linhart B, Swoboda I, Niederberger V (2011) Recombinant allergens for allergen-specific immunotherapy: 10 years anniversary of immunotherapy with recombinant allergens. Allergy 66:775–783

    Article  PubMed  CAS  Google Scholar 

  48. Cromwell O, Niederberger V, Horak F, Fiebig H (2011) Clinical experience with recombinant molecules for allergy vaccination. Curr Top Microbiol Immunol 352:27–42

    Article  PubMed  CAS  Google Scholar 

  49. Crameri R, Kundig TM, Akdis CA (2009) Modular antigen-translocation as a novel vaccine strategy for allergen-specific immunotherapy. Curr Opin Allergy Clin Immunol 9:568–573

    Article  PubMed  CAS  Google Scholar 

  50. Moldaver D, Larche M (2011) Immunotherapy with peptides. Allergy 66:784–791

    Article  PubMed  CAS  Google Scholar 

  51. Cox L, Esch RE, Corbett M et al (2011) Allergen immunotherapy practice in the United States: guidelines, measures, and outcomes. Ann Allergy Asthma Immunol 107:289–299, quiz 300

    Article  PubMed  Google Scholar 

  52. Annequin MC, Dayan-Kenigsberg J, Erlandsson-Persson K et al (1999) Allergen regulation in European countries. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe 93:21–37

    Google Scholar 

  53. May S, Kaul S, Lüttkopf D, Vieths S (2009) Regulation, role and future of named patient products in Germany. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe 96:193–197

    Google Scholar 

  54. Kroon AM (2003) The EAMG position on the regulation of existing products for treatment with special reference to named patient products (NPPs). Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe 97:7–14

    Google Scholar 

  55. Englert L, May S, Kaul S, Vieths S (2012) The therapy allergens ordinance („Therapieallergene-Verordnung“). Background and effects. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 55:351–357

    Article  CAS  Google Scholar 

  56. Egger M, Hauser M, Himly M et al (2009) Development of recombinant allergens for diagnosis and therapy. Front Biosci 1:77–90

    Google Scholar 

  57. Kaul S, Englert L, May S, Vieths S (2010) Regulatory aspects of specific immunotherapy in Europe. Curr Opin Allergy Clin Immunol 10:594–602

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. Die folgenden Aktivitäten der letzten 5 Jahre von S. Vieths könnten als potenzieller Interessenkonflikt in Bezug auf den vorliegenden Artikel wahrgenommen werden: Ein Vortragshonorar von Phadia (heute Thermofisher), Uppsala, ein Honorar der Fresenius Akademie, Dortmund für die Organisation eines Seminars über Nahrungsmittelallergene, Honorare als Expertengutachter für die Allergen Online Datenbank des Food Allergy Resource and Research Program, University of Nebraska, Lincoln, NE, USA, sowie eine frühere Beteiligung als Gesellschafter des Instituts für Produktqualität in Berlin und Beratungshonorare durch das Institut. T. Bieber: kein Interessenkonflikt anzugeben. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Vieths or T. Bieber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieths, S., Bieber, T. Personalisierte Ansätze zur Diagnostik und Therapie von Allergien. Bundesgesundheitsbl. 56, 1531–1537 (2013). https://doi.org/10.1007/s00103-013-1821-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-013-1821-3

Schlüsselwörter

Keywords

Navigation